Lab 5: Pipelining an SMIPSv2 Processor: Part 1

6.375 Laboratory 5
Assigned: March 4, 2011
Due: March 11, 2011

1 Introduction

In this laboratory assignment and the next you will be provided with an unpipelined three stage
SMIPSv2 processor in Bluespec which you must pipeline to acheive good performance. Obtaining
good performance requires a solid understanding of how Bluespec schedules rules, something you
should be an expert at by the time you complete these labs. For this first lab your task is to produce
an elastic pipelined design which functions correctly. The next lab will focus on achieving adequate
performance in the pipeline.

This lab handout describes the processor infrastructure, including how to build and run the processor
to determine if it functions correctly and how well it performs, advice on how to debug the processor,
the initial unpipelined processor design, and detailed steps you should take to successfully pipeline
the unpipelined processor.

2 The Processor Infrastructure

A large amount of work has already been done for you in setting up the infrastructure to run, test,
evaluate performance, and debug your SMIPSv2 processor in simulation and on the FPGA. This
section describes that infrastructure.

Appendix [A] inclues a reference on the SMIPSv2 instruction set your processor supports.

2.1 Getting Started

Update your local repository with the code from the lab 5 harness. Add the 6.375 course locker,
source the setup script, navigate to the directory which contains the audio/ folder from previous
labs, and run

$ tar xf /mit/6.375/1lab-harnesses/lab5-harness.tar.gz

This will create a directory called smips with the code for this lab and the next. To save your
changes to your local repository, run

$ git add smips
$ git commit -m "lab5 initial checkin"

InstCacheBlocking
MMem MemArb
Stats DataCacheBlocking el
ToHost Processor

Core

Figure 1: Processor Core

2.2 The Source Code

Figure[I| shows the processor core described by the source code in the src/ directory. The processor
is connected to instruction and data caches. The instruction and data caches interface to the main
off-core memory through the memory arbiter. The processor core and both caches collect and expose
statistics about the runtime behavior. The processor’s toHost register used in the MTCO instruction
is also exposed.

The source code implementing the core and all of its components is split into files in the src/
directory as follows.

Core.bsv The top level core. This instantiates the memory arbiter, instruction and data caches,
and the processor.

DataCacheBlocking.bsv Implementation of the data cache.
InstCacheBlocking.bsv Implementation of the instruction cache.

MemArb.bsv Implementation of the memory arbiter which arbitrates requests to main memory from
the instruction and data caches.

MemTypes.bsv Common types related to memory.
ProcTypes.bsv Common types related to the processor.

Processor.bsv The actual processor. The processor provided is a three stage unpipelined processor
described in more detail in section[3] This is where the majority, if not all, of your modifications
should be made for this lab.

SFIF0.bsv Implementations of searchable FIFOs for use in pipelining the processor.

Trace.bsv Definition of the Trace typeclass used for trace output. Tracing is described in more
detail in section 2.6

2.3 The SceMi Setup

Figure [2| shows the SceMi setup for the lab. The SceMiLayer instantiates the core shown in figure
and SceMi ports for the core’s main memory client, stats, and toHost interface. The SceMiLayer

Processor
Main Mem [] e [
D Stats D_ Core
Main Loo
P [ToHost L
TestBench Rst
SceMilLayer
Host
Software Bridge Hardware

Figure 2: SceMi Setup

also provides a SceMi port for reseting the core from the test bench, allowing multiple programs to
be run on the Processor without reprogramming the FPGA.

The core’s main memory is implemented in the software test bench running on the host for conve-
nience. Cache misses will result in a memory request being sent accross the SceMi link.

Source code for the SceMiLayer and Bridge are in the scemi/ directory. The SceMi link goes over
a TCP bridge for simulation and a PCle bridge when running on the actual FPGA.

2.4 Building the Project

The file sim/project.bld describes how to build the project using the build command which is
part of the Bluespec installation. Run build --doc for more information on the build command.
The full project, including hardware and testbench, can be rebuilt from scratch by running the
command build -v from the sim/ directory.

The file sim/sim.bspec is a Bluespec Workstation project file that can be used to build the project
from within the Bluespec Workstation rather than building from the command line. To build the
project in the Workstation, run from the sim/ directory:

bluespec sim.bspec&

This opens up the Workstation. From there you can compile and link to generate the two executables
bsim_dut and tb. The executable bsim_dut simulates the hardware; tb is the test bench.

The fpga/ directory contains its own project.bld and fpga.bspec for building the project for the
FPGA. Building for the FPGA includes running synthesis, map, and place-and-route, and takes on
the order of an hour to complete. When the build has completed, the FPGA can be programmed
using the ../tools/program fpga command on the FPGA servers. Building for FPGA also creates
a tb executable for the test bench.

2.5 Using the Test Bench

The test bench is software run on the host processor which interacts with the SMIPSv2 processor
over the SceMi link, as shown in figure[2] The test bench loads a program for the SMIPSv2 processor
to execute, waits for the processor to send a non-zero value over the toHost interface, then collects
and displays whatever statistics were gathered in the core when executing the SMIPSv2 program.

The SMIPSv2 programs are specified in Verilog Memory Hex (vmh) format. The data/ directory
contains a number of programs in this format. It is also possible to use the smips-gcc toolchain to
compile your own ¢ programs to this format. Ask the TA for more info if you are interested in doing
S0.

The test bench takes a single command line argument which is the .vmh file with the program to
run on the SMIPSv2 processor.

To run the test bench, first build the project as described in section[2.4] For simulation the executable
bsim_dut will be created, which should be running when you start the test bench. For the FPGA
you should first program the FPGA with ../tools/program fpga on one of the FPGA servers.
Then you can call the tb executable.

For example, to run the gsort benchmark on the processor in simulation you could use the commands:

./bsim_dut 2> trace.txt &
./tb ../data/qsort.smips.vmh

The test bench outputs the result of the program and statistics. The SMIPSv2 program could either
fail, pass, or timeout, as determined by the value in the toHost register in the SMIPSv2 Processor,
which is set by the running SMIPSv2 program.

In simulation the test bench can also be run from the Bluespec Workstation. By default the gsort
benchmark is run in the workstation. To change which program to run on the SMIPSv2 processor
in the workstation go to Project->0Options, choose the Sce-Mi tab and change the command line
arguments to tb in the simulate command field.

Source code for the test bench is in the tb/ directory. The vmh-* files simulate the main memory
for the processor and the TestBench. * files implement the main loop and SceMi communications.

2.6 Debugging with Traces

When you run the processor in simulation, the bsim_dut outputs to stderr a trace of the execution of
the processor. This trace information originates from various uses of the traceTiny() and traceFull()
functions in the BSV source code for the core. These functions output a trace tag and some trace
data using the Bluespec action $fdisplay. This data can be redirected to a file when running the
bsim_dut. For example, you could run the bsim_dut with

./bsim_dut 2> trace.txt &

which will output the trace data to the file trace.txt once you have run the test bench.

The script bsv-trace.pl in the tools/ directory turns this trace output into a clean text trace
format with one cycle per line. The script takes a configuration file as input which describes how
to transform the trace output. For example, the following commands can be used to run the addiu

processor stage [icache 1 I dcache 1 I mem-arb]
pc [PIXIW] [reqlresplstagelhit/miss] [reqlresplstagelhit/miss] [reqOlreqllreq2] exInst

CYC: 1293 pc=
CYC: 1294 pc=
CYC: 1295 pc=
CYC: 1296 pc=
CYC: 1297 pc=
CYC: 1298 pc=00001018
CYC: 1299 pc=

bne r2, r3, 0x0002

L B B B W e W W |
[S T W SN S |
Lo B B W W M W |

=

o

o
Lo B B e W W W W |
e e e e e
L B B W W e W e W |
[S T W TN S |

Figure 3: formatted trace

assembly test on the SMIPSv2 processor and produce a clean trace. Part of the trace output is
shown in Figure [3]

sim$./bsim_dut 2> trace.txt & sleep 1 ; ./tb ../data/smipsvl_addiu.S.vmh
sim$../tools/bsv-trace.pl ../tools/proc-trace.cfg trace.txt

The first column of the clean trace lists the cycle followed by the pc. Next is a character corresponding
to the current stage or rule which is executing in the processor (P for pcGen, X, for exec, and W for
writeback). Then a column corresponding to the state of the instruction cache, followed by a column
corresponding to the state of the data cache. The pen-ultimate column displays the state of the
memory arbiter while the last shows the instruction being executed. Look at the implementation
of each module which outputs traces for a better idea of the meanings of each field. It is relatively
simple to add new trace messages, and to extend the perl scripts to format them appropriately. You
may find this useful when pipelining your designs as the version provided may not print out all the
information you need.

2.7 Assembly Tests

The data/ directory contains a number of sample programs you can run on your SMIPSv2 processor.

Those files in the data/ with the .S.vmh extension are assembly tests. These are microbenchmarks
written in assembly which test specific instructions. Running the assembly tests is a good way to
check for errors in your processor implementation and to narrow down which instructions are the
source of any problems.

For the assembly tests no statistics are collected. This means the statistics reported for the assembly
tests will always be zero, with a bogus IPC. The assembly tests will either pass, timeout, or fail
with a specific code corresponding to which subtest within the test failed. To see which subtest
corresponds to the return code, look in the .vmh file for the test, or the source code for the test,
which can be found on the course locker under the /mit/6.375/install/smips-tests/ directory.

The tools/ directory contains a couple of scripts you can use for running all of the assembly tests and
summarizing the results. The script tools/sim-asm-tests runs the assembly tests in simulation. It
should be run from the sim/ directory after the project has been built for simulation. For example:

sim$../tools/sim-asm-tests

Each of the assembly tests should take no more than a few seconds to complete.

The script tools/fpga-asm-tests is used to run all the assembly tests on the FPGA. It should be
run from the fpga/ directory after the FPGA has been programed.

It is highly recommended you rerun all the assembly tests after making any changes to your processor
to verify you didn’t break anything. Also, run the assembly tests when trying to locate a bug, as
they will narrow down which instructions are problematic.

2.8 Benchmarks

Also in the data/ directory, with the extension .smips.vmh, are benchmarks which can be used
to evaluate the performance of your processor. Performance is measured in instructions-per-cycle
(IPC). The greater the IPC the better. For our pipeline we can never exceed an IPC of 1, but we
should be able to get close to it.

Each benchmark consists of a function implemented in C which is used for evaluating performance
of the processor. The benchmarks work by first executing the function to load the caches. They
then re-execute the function with statistics enabled, and finally verify the result of the function. The
function is executed twice so there are no cache misses when statistics are enabled, because cache
misses go back to the main memory on the host processor across the SceMi link, which is so slow it
will distract from the processor performance that we are really interested in. The trace data output
includes information for both runs. You probably want to focus on when the caches are hitting,
which happens after the 3rd occurrence of executing mtcO r4, cpriO.

The script tools/sim-smips-bmarks runs in simulation each of the benchmarks in turn and reports
the stats collected. The benchmarks take longer to run then the assembly tests. Each benchmark
may take up to 30 seconds to complete.

The script tools/fpga-smips-bmarks runs the benchmarks on the FPGA assuming the FPGA has
already been programmed.

3 The Unpipelined Processor

A sketch of the unpipelined processor microarchitecture implemented in src/Processor.bsv is
given in Figure [l The processor is split into three mutually exclusive rules corresponding to its
three stages: pcGen, exec, and writeback. The stage register keeps track of the currently executing
stage. For the unpipelined processor only a single instruction is active in the processor at a time.
Your task in pipelining the processor will be to allow multiple instructions to be active in the
processor at the same time.

The three stages of the unpipelined processor are

pcGen Makes requests to the instruction memory for the next instruction and sets the next stage
to exec.

exec Takes the response from the instruction memory, decodes the instruction, reads the register
file for operands and executes the instruction. For ALU instructions the register file is updated
right away and the next stage set to pcGen. For memory instructions a request is made to
data memory and the next stage set to writeback. For branch instructions the pc register is
updated appropriately and the next stage set to pcGen.

writeback Takes the response from the data memory and updates the register file for load instruc-
tions.

instReqqQ| [INStRespQ dataReqq] [JdataRespQ

! !

! | ! |
mklCacheBlocking mkDCacheBlocking

Figure 4: Original Microarchitecture

4 Pipelining the Processor

Pipelining the processor means allowing multiple instructions to be active in the processor at the
same time. The three stages pcGen, exec, and writeback should all be firing almost every cycle,
each working on a different instruction while maintaining a low critical path through the processor.
To achieve this we need to get rid of the stage register in the unpipelined processor and allow the
rules to fire independently. In the next lab we will analyze the performance and deal with a number
of subtle scheduling issues preventing the rules from actually firing concurrently whenever possible.

This lab focuses on removing the stage register while maintaining the correct functional behavior.

4.1 Moving Register Updates to the Writeback Stage

As the processor is now implemented, the register file is updated sometimes in the exec stage and
sometimes in the writeback stage. For our pipelined processor it will be much more convenient if the
register file is only updated from a single rule. This means we don’t have to worry about the register
file being updated out of order. It makes sense to do the update in the writeback rule because we
have to wait for load responses before we can do the update in some cases.

Change the exec and writeback stages so the register file is only updated in the writeback rule. You
should add a FIFO, call it wbQ, between the exec and writeback stages which holds the register
destination and value for ALU type instructions and the register destination for LOAD type in-
structions. All of the ALU instructions in exec should go to the writeback stage instead of pcGen.
Defining your own data type for storing this information in the wbQ is a good idea. Later we’ll refer
to this data type as a WBResult.

To ease the transition we have encapsulated all calls to rf .wr for arithmetic instructions in an Action
function called wba. You will want to change the implementation of this function.

After making your changes, rf.wr should only be called from the writeback rule, and not from the
exec rule. Run all of the assembly tests and benchmarks to verify they pass before moving on to

the next step. You may also want to check your revisions into your local git repository once you get
this working.

4.2 Letting Writeback Run Independently

Now that all the register file updates are performed in the writeback rule, we can separate the
writeback rule from pcGen and exec, allowing it to run currently with the pcGen and exec rules,
one step closer toward a fully pipeliend processor.

With this change, the stage register will alternate back and forth between pcGen and exec. The
writeback rule will no longer have any explicit guard, firing whenever there is anything for it to write
back to the register file.

We have to be careful when letting the exec and writeback rules fire separately that we don’t break
the functionality of the processor. Is it possible the exec rule could read a register file before the
writeback rule had a chance to update it? Consider the following program.

A) addiu r6, r10, 1
B) xor r4, r5, r6

The processor will eventually reach the following state:

dest:r6
data: (rl10+1)

exec

wbQ

xor r4, r5, r6

instRespQ

Instruction B cannot be executed because it reads r6, and instruction A is responsible (and has not
yet) written the new value back to the register file. This means we need to stall the execution of
instruction B until the instruction A writes the register file.

We will detect these Read-After-Write (RAW) hazards by making wbQ a SFIFO, a searchable FIFO
with the following interface:

interface SFIFO#(type any_T, type search_T);
//Standard FIFO methods
method Action enq(any_T data);
method Action deq();
method any_T first();
method Action clear();
//New SFIFO methods
method Bool find(search_T searchVal);
method Bool find2(search_T searchVal);
endinterface

SFIFO is just like a normal FIFO with two extra methods: find() and £ind2(). These methods
take a value to search for within the SFIFO, returning True if the given parameter is present in
the FIFO, and False otherwise. £ind() and £ind2() have no implicit condition — they are always
ready — they will simply return False if the FIFO is empty.

Why does SFIFO include two methods find() and £ind2()? This so you can search it twice for
instructions that have two operands. For instance, in the above example the execute rule can check
if r5is in the writebackQ using find (), and r6 using £ind2(). However if the instruction had been
xori instead of xor, it just would have used £ind () because xori just has one register argument.

You must define what it means to search the SFIFO by writing a function. This function should
take an Rindx (the thing we’re looking for) and a WBResult (the elements through which we are
searching). The function should return true if the search value is “found” in the given FIFO element.

function Bool findf(Rindx searchval, WBResult val);
//You write this
endfunction

When you instantiate the SFIFO, you should pass in the appropriate types and find function. What
does it mean to pass in a function to a hardware module in Bluespec? Essentially it means that
when the compiler instantiates the module it will do so with the combinational logic you provide.
Think of the SFIFO as a black box — a black box with a hole in it. The function you provide fills
that hole.

Thus the types of the writeback queue is as follows:

//Searchable for stall signal
SFIFO#(WBResult, Rindx) wbQ <- mkSFIFO(findf);

It would be good to encapsulate the stall signal inside a function which reads the wbQ and instruction
to execute and returns True if the execute stage must stall and False otherwise. This function should
be added to the explicit guard of the exec rule.

Make these changes to your processor. The stage register should never enter Writeback, the writeback
rule should have no explicit guard, and the exec rule should stall when appropriate to avoid Read-
After-Write hazards. After you’ve made these changes rerun the assembly tests and benchmarks to
verify you haven’t broken anything, then check your latest work into your local git repository.

4.3 Letting PCGen and Exec Run Independently

We are now at the point where we can remove the stage register completely, freeing the pcGen and
exec stages to run independently.

The trouble is, pcGen depends on the result of exec to know what the next pc should be. We can
get around this by having the pcGen stage guess what the next pc should be. A good guess for the
next pc would be pc+4. We will improve this in the next lab by implementing a smarter branch
predictor, but for now pc+4 will work fine as our branch prediction algorithm.

To maintain functional correctness in light of the pcGen stage guessing the next pc we need a way
to detect when pcGen’s guess was wrong and undo whatever work pcGen started incorrectly.

There are now two notions of the current pc. There is the speculative pc pcGen runs off of, and the
correct pc exec runs from. The pcGen stage should send information via a FIFO, call it pcQ, to the
exec stage so exec is able to detect when the next pc predicted by the pcGen stage is different from
the next pc the exec stage calculates is the correct next pc.

When pcGen messes up, there will be bad instruction requests made to memory which need to
be killed. A simple way to kill these wrong path instructions is to associate an epoch with every
instruction. An epoch is a conceptual grouping of all instructions in between branch mispredictions.
The epoch is incremented when a misprediction is detected. Only instructions from the current
epoch are executed, instructions from the old epoch are killed. You may wish to introduce a new
rule especially for killing instructions with an old epoch.

When you have made these changes your processor should no longer have or refer to the stage
register. Rerun the assembly tests and benchmarks to verify nothing has broken. Check in your
latest work to your local repository, then push that to your repository on the course locker to submit
the lab. For example:

smips$ git add -u .
smips$ git commit -m "Lab 5 submission"
smips$ git push

10

A SMIPSv2 Instruction Set

31 26 25 21 20 16 15 1 10 6 5 0
opcode rs rt rd [shamt [funct R-type
opcode s rt immediate I-type
opcode target J-type
Load and Store Instructions
100011 base dest signed offset LW rt, offset(rs)
101011 base dest signed offset SW rt, offset(rs)
I-Type Computational Instructions
001001 src dest signed immediate ADDIU rt, rs, signed-imm.
001010 src dest signed immediate SLTI rt, rs, signed-imm.
001011 src dest signed immediate SLTIU rt, rs, signed-imm.
001100 src dest zero-ext. immediate ANDI rt, rs, zero-ext-imm.
001101 sre dest zero-ext. immediate ORI rt, rs, zero-ext-imm.
001110 src dest zero-ext. immediate XORI rt, rs, zero-ext-imm.
001111 00000 dest zero-ext. immediate LUI rt, zero-ext-imm.
R-Type Computational Instructions
000000 00000 src dest shamt 000000 SLL rd, rt, shamt
000000 00000 sre dest shamt 000010 SRL rd, rt, shamt
000000 00000 src dest shamt 000011 SRA rd, rt, shamt
000000 rshamt src dest 00000 000100 SLLV rd, rt, rs
000000 rshamt src dest 00000 000110 SRLV rd, rt, rs
000000 rshamt src dest 00000 000111 SRAV rd, rt, rs
000000 srcl src2 dest 00000 100001 ADDU rd, rs, rt
000000 srcl src2 dest 00000 100011 SUBU rd, rs, rt
000000 srcl src2 dest 00000 100100 AND rd, rs, rt
000000 srcl src2 dest 00000 100101 OR rd, rs, rt
000000 srcl src2 dest 00000 100110 XOR rd, rs, rt
000000 srcl src2 dest 00000 100111 NOR rd, rs, rt
000000 srcl src2 dest 00000 101010 SLT rd, rs, rt
000000 srcl src2 dest 00000 101011 SLTU rd, rs, rt
Jump and Branch Instructions
000010 target J target
000011 target JAL target
000000 src 00000 00000 00000 001000 JR s
000000 src 00000 dest 00000 001001 JALR rd, rs
000100 srcl src2 signed offset BEQ rs, rt, offset
000101 srcl src2 signed offset BNE rs, rt, offset
000110 src 00000 signed offset BLEZ rs, offset
000111 src 00000 signed offset BGTZ rs, offset
000001 src 00000 signed offset BLTZ rs, offset
000001 src 00001 signed offset BGEZ rs, offset
System Coprocessor (COP0) Instructions
010000 00000 dest copOsrc 00000 000000 MFCO rt, rd
010000 00100 src copOdest 00000 000000 MTCO rt, rd

Figure 5: SMIPSv2 Instruction Set

11

	Introduction
	The Processor Infrastructure
	Getting Started
	The Source Code
	The SceMi Setup
	Building the Project
	Using the Test Bench
	Debugging with Traces
	Assembly Tests
	Benchmarks

	The Unpipelined Processor
	Pipelining the Processor
	Moving Register Updates to the Writeback Stage
	Letting Writeback Run Independently
	Letting PCGen and Exec Run Independently

	SMIPSv2 Instruction Set

