
Lab 6: Pipelining an SMIPSv2 Processor: Part II

6.375 Laboratory 5
Assigned: March 11, 2011

Due: March 18, 2011

1 Introduction

This laboratory assignment continues the previous lab, improving the performance of your elastic
SMIPSv2 pipeline. Obtaining good performance requires a solid understanding of how Bluespec
schedules rules, something you should be an expert at by the time you complete this lab. Your task
is to produce a pipelined design which functions correctly and achieves adequate performance in
simulation and on the FPGA.

2 Achieving Pipeline Performance

If you run the benchmarks now you should see IPC numbers around those listed in table 1. This
is a good improvement over the original unpipelined processor but is still a ways away from the
best possible IPC of 1. If you look at the processor traces you’ll see the rules do not always fire
when you expect. To fix this you will have to understand how the rules are scheduled and choose
implementations of your FIFOs and RegFile which have the right scheduling properties.

One reason your rules may not be firing when expected is if there is a conflict between the rules.
Take for example the exec and writeback rules as they are now. The exec rule reads values from the
register file and the writeback rule writes values to the register file. The register file requires reads
happen before writes in the same cycle, so the exec rule must logically happen before the writeback
rule when they are both enabled in the same cycle. At the same time, however, the exec rule calls
the deq method of the wbQ and the writeback calls the enq method of the wbQ. The scheduling
behavior of the mkSFIFO module is that enq must happen before deq, which says writeback must
happen before exec when they are both enabled in the same cycle. This contradicts with the ordering
requirement from the register file, meaning there is no logical ordering which satisfies the scheduling
requirements, so the two rules conflict and cannot execute concurrently.

Consider now the size of the pcQ. If the pcQ is too small relative to the latency of the instruction
cache, the pcQ will be full by the time the first response comes back from the instruction cache. If
the pcQ is full the pcGen and exec rules might not be able to fire concurrently if the FIFO chosen
for the pcQ doesn’t allow simultaneous enqueue and dequeue when full.

Benchmark IPC
median 0.38
multiply 0.38
qsort 0.42
towers 0.39
vvadd 0.39

Table 1: TA’s IPC after removing stage register completely

2.1 Avoiding RWires

While we have introduced wire constructs explicitly in the lectures, it is generally not a good idea
to use them directly in your designs. If you feel inclined to use wires, make sure you have a good
reason for using them and always wrap the use of the wire in a small safe module. Do not directly
instantiate RWires in your mkProc module! For example, rather than using an RWire directly, use
library modules such as BypassFIFO or LFIFO, or wrap the RWire inside a small module as we will
do for the Bypassed Register File.

2.2 Schedule Analysis in the Workstation

The Bluespec Workstation provides Schedule Analysis tools which will be very helpful in under-
standing why rules don’t fire when you expect them to.

When you have compiled your design you can go to Window->Schedule Analysis, which opens up
the schedule analysis window. From that window go to Module->Load and select mkProc as the
module to load.

The rule order tab lists all the rules in the mkDutWrapper module, which the processor is a part of.
The rule names may change slightly depending on the synthesis boundaries, but will always end with
the original string which appeared in your BSV source. If you select a rule you can see the rule’s
predicate and any blocking rules. Pay close attention to the predicate as you may have invoked a
method with an implicit condition which you didn’t count on. The predicate listed here includes all
lifted implicit conditions.

The rules are listed in the rule order tab in their logical order. This is the final global ordering of
all the rules. Let’s review a few scheduling terms before discussing how exactly to interpret this
order. The term urgency refers to the relative priority given to two conflicting rules by the bluespec
compiler. If two rules conflict the “more urgent” rule will fire if its guard is true, blocking the firing
of the “less urgent” rule. The term earliness is used to describe the logical ordering assigned by the
bluespec compiler to two rules which don’t conflict. If rules A and B are sequentially composable,
(A before B), then A will appear to fire before B; A will be “earlier” than B, and appear before B in
the logical ordering of rules. If A and B are conflict free, the Bluespec compiler makes an arbitrary
choice in assigning relative earliness to the two rules. If the two rules are conflicting or mutually
exclusive, their order is meaningless, so the compiler chooses an arbitrary order. Relative urgency
and earliness can be set by using the pragmas descending urgency and execution order, which are
described in the Bluespec reference guide.

You can get more information about how two rules are related by going to the Rule Relations tab in
the Schedule Analysis window. For example, select the exec rule for Rule 1 and the writeback rule
for Rule 2 and click Analyze. The analysis window will report something like that shown in figure
1.

Those items listed under the <> indicate reasons why the rules are not conflict free. For example,
the first item

rf_rfile.sub vs. rf_rfile.upd

says the exec rule calls the sub method of the register file while the writeback calls the upd method
of the register file. This places a restriction on the ordering of the exec and writeback rules. It is
okay to have items listed under <> as long as they all require the same ordering constraint.

2

Figure 1: Rule Analysis between exec and writeback

Module Package Size enq vs deq Simultaneous deq, enq?
mkFIFO FIFO 2 CF Not empty and not full
mkFIFO1 FIFO 1 CF Never
mkSizedFIFO(n) FIFO n CF Not empty and not full
mkLFIFO FIFO 1 deq < enq Not empty
mkLSizedFIFO(n) FIFO n deq < enq Not empty
mkBypassFIFO SpecialFIFOs 1 enq < deq Not full
mkSFIFO SFIFO 2 deq < enq, find Not empty
mkSFIFO1 SFIFO 1 CF, deq < find Never
mkSizedSFIFO(n) SFIFO n C, find < enq,deq Never.

Table 2: Various FIFOs and their properties

Those items listed under the < are reasons the first rule cannot be executed in sequence before the
second rule. In this case we see an RWire is being set inside the wbQ which disallows the exec rule
to be executed in sequence before writeback.

Taken together this means there is a conflict between the rules and they will never both fire in the
same cycle.

2.3 Choosing the Right FIFOs

You have a number of choices to use for your FIFO implementations in the mkProc module. These
are listed in table 2 with their properties. Use the schedule analysis tool to understand why your
rules aren’t firing together and determine what scheduling properties or sizes you need from your
FIFOs to resolve any conflicts. Then consult table 2 for the appropriate FIFO.

You should only change the FIFO implementations inside the mkProc module. Assume the FIFOs
in the caches are appropriately chosen already. That said, you may still need to consult the FIFO
choices inside the caches to make the best decision about which FIFOs to use in the mkProc module.

The mkBypassFIFO is special in that it behaves like a wire if there is simultaneous enqueue and
dequeue. This may increase the critical path if you aren’t careful. Bypass FIFOs are great for when
the data being enqueued either comes directly from or goes directly to a register.

2.4 Bypassing the Reg File

The register file we use has the scheduling property that reads must happen before writes. It may
be the case you wish to use a register file with the property that writes happen before reads.

3

Benchmark IPC
median 0.613147
multiply 0.630249
qsort 0.753039
towers 0.669303
vvadd 0.666667

Table 3: TA’s IPC after bypassing reg file and choosing right FIFOs

Devise a new register file which schedules writes before reads and bypasses written data if a simul-
taneous read address corresponds to the write address. Using a pair of RWires and a conflict-free
register file (mkRegFileWCF) you should be able to devise a new register file with the behavior
described above.

The MIPS ISA requires that a read from register r0 always return the value 0. This is why the
implementation of mkRFile has the conditional statement

return (rindx == 0) ? 0 : rfile.sub(rindx);

instead of directly calling rfile.sub(rindx);. Your implementation of the bypassed register file
must follow these same semantics. It should always return 0 for register r0, even if a nonzero value
was written to register r0 the instruction before.

2.5 Resolving the Conflicts

Choose appropriate implementations for your FIFOs and register file from the choices described
above to resolve any remaining conflicts between your pipeline stages. Your IPC after making these
changes should be comparable to the TA’s IPC numbers listed in table 3.

Remember to rerun the assembly tests too to verify you did not break anything, then check in your
code to your local git repository.

3 Implementing a Better Branch Predictor

Currently your pcGen stage guesses the next pc will always be pc+4. We can improve the perfor-
mance of our processor by implementing a smarter branch predictor. One goal of this task is for you
to design and implement your own module from scratch.

1. Define an interface for your branch predictor with the methods we want to have. There should
be a way to ask the predictor for its prediction and some way to update the predictor with
information about branches taken.

2. Next you should change your processor to use your branch predictor. A good way to start
would be to implement a branch predictor which always predicts pc+4 just like the processor
does now. Plug that branch predictor into the processor and verify nothing broke and your
IPC is the same as it was.

3. Implement a better version of the branch predictor. You are allowed to implement any algo-
rithm you want, but we suggest you keep it simple and use a branch target buffer (BTB) to
remember when we have seen a branch instruction and what its results was. Ideally, this is just

4

Benchmark IPC
median 0.72
multiply 0.92
qsort 0.79
towers 0.74
vvadd 0.76

Table 4: TA’s IPC with Branch Prediction

a big array which holds every possible address and the last prediction (defaulting to pc + 4).
Of course, you cannot fit 232 address so you will need to keep a cache. A small direct-mapped
cache (of say 16 elements) should be pretty good. Remember that the bottom 2-bits of the
address will always be zero so you should use the next few bits indexing into the cache.

Switch to using your new branch predictor in your processor and verify everything works and
the IPC has improved as expected.

Table 4 shows the IPC of the TA’s processor using the 16 element BTB predictor described above.
Your processor should have IPC within 5% or better of the TA’s IPC numbers.

4 Discussion Questions

Question 1: IPC

List the IPC of your design for each of the provided benchmarks.

Compare the results of your processor with branch prediction to the one without it.

How much does the IPC improve on average? Can you estimate how much your branch prediction
rate improved with the new predictor?

Question 2: Design Choices

Discuss and motivate any design choices you made. What FIFOs did you end up using, and why is
this a good configuration? What is the relationship between your Execute and Writeback rules? Are
they conflict-free, sequentially composable, or Conflicting? Why has the scheduler deduced this?

Question 3: Area/Performance Tradeoff

List the increase in FPGA resource usage between the original microarchitecture and your pipelined
refinement. Do you think the improved performance (IPC) is worth the increased area? While it is
probable that you are able to clock both designs at 50 MHz, it is easy to imagine that your refinement
will in reality be able to run at a slower frequency than the original due to the combinational paths
introduced through the BypassFIFOs and SFIFOs. Use the average IPC of both microarchitectures
to compute the slowest frequency at which your pipelined refinement must run in order to have
better absolute performance (instructions per second), assuming the original can be clocked at 100
MHz.

5

5 What to Turn In

When you have completed the lab you should check in a final version via git. This should include
your pipelined processor with bypassed register file and branch prediction functional in simulation
and on the FPGA. Also include a file answers in the top level lab directory with your answers to
the discussion questions. Remember to add to git any new source files you may have introduced.
For example, if you didn’t add any new source files, you could run

smips$ git add answers

smips$ git ci -m "Lab 6 final submission"

smips$ git push

6

	Introduction
	Achieving Pipeline Performance
	Avoiding RWires
	Schedule Analysis in the Workstation
	Choosing the Right FIFOs
	Bypassing the Reg File
	Resolving the Conflicts

	Implementing a Better Branch Predictor
	Discussion Questions
	What to Turn In

