
1

Elastic Pipelines and
Basics of Multi-rule
Systems

Arvind
Computer Science & Artificial Intelligence Lab
Massachusetts Institute of Technology

February 16, 2011 L05-1http://csg.csail.mit.edu/6.375

Elastic pipeline
Use FIFOs instead of pipeline registers

f1 f2 f3

x
fifo1inQ

f1 f2 f3

fifo2 outQ

rule stage1 (True);
fifo1.enq(f1(inQ.first());
inQ.deq(); endrule

rule stage2 (True);

Can all three rules
fire concurrently?

fifo2.enq(f2(fifo1.first());
fifo1.deq(); endrule

rule stage3 (True);
outQ.enq(f3(fifo2.first());
fifo2.deq(); endrule

February 16, 2011 L05-2http://csg.csail.mit.edu/6.375

2

Concurrency analysis and
rule scheduling

February 16, 2011 L05-3http://csg.csail.mit.edu/6.375

Guarded Atomic Actions (GAA):
Execution model

Repeatedly:Repeatedly:
Select a rule to execute
Compute the state updates
Make the state updates

Highly non-
deterministic

User
annotations
can help in
rule selection

Implementation concern: Schedule
multiple rules concurrently without
violating one-rule-at-a-time semantics

February 16, 2011 L05-4http://csg.csail.mit.edu/6.375

3

some insight into

Concurrent rule firing

Rules Ri Rj Rk rule

There are more intermediate states in the rule

Rules

HW clocks

steps

Ri

Rj
Rk

There are more intermediate states in the rule
semantics (a state after each rule step)
In the HW, states change only at clock edges

February 16, 2011 L05-5http://csg.csail.mit.edu/6.375

Parallel execution
reorders reads and writes

Rules rule
d it d it d itd itd it

In the rule semantics, each rule sees (reads)

HW clocks

stepsreads writes reads writes reads writesreads writesreads writes

reads writes reads writes

the effects (writes) of previous rules
In the HW, rules only see the effects from
previous clocks, and only affect subsequent
clocks

February 16, 2011 L05-6http://csg.csail.mit.edu/6.375

4

Correctness

Rules Ri Rj Rk rule

Rules are allowed to fire in parallel only if the

Rules

HW clocks

steps

Ri

Rj
Rk

net state change is equivalent to sequential
rule execution
Consequence: the HW can never reach a state
unexpected in the rule semantics

February 16, 2011 L05-7http://csg.csail.mit.edu/6.375

A compiler can determine if two
rules can be executed in parallel rules can be executed in parallel
without violating the one-rule-
at-a-time semantics

James Hoe, Ph.D., 2000

February 16, 2011 L05-8http://csg.csail.mit.edu/6.375

5

Rule: As a State Transformer
A rule may be decomposed into two parts
(s) and (s) such that(s) and (s) such that

snext = if (s) then (s) else s

(s) is the condition (predicate) of the rule,
a.k.a. the “CAN_FIRE” signal of the rule. is
a conjunction of explicit and implicit
conditionsconditions

(s) is the “state transformation” function,
i.e., computes the next-state values from the
current state values

February 16, 2011 L05-9http://csg.csail.mit.edu/6.375

Executing Multiple Rules Per Cycle:
Conflict-free rules

Parallel execution behaves

rule ra (z > 10);
x <= x + 1;

Parallel execution behaves
like ra < rb or equivalently
rb < ra

endrule

rule rb (z > 20);
y <= y + 2;

endrule

Rulea and Ruleb are conflict-free if
s . a(s)  b(s)  1. a(b(s))  b(a(s))

rule ra_rb;
if (z>10) then x <= x+1;
if (z>20) then y <= y+2;

endrule

Parallel Execution can
also be understood in
terms of a composite

rule

a() b() a(b()) b(a())
2. a(b(s)) == b(a(s))

February 16, 2011 L05-10http://csg.csail.mit.edu/6.375

6

Mutually Exclusive Rules
Rulea and Ruleb are mutually exclusive if they
can never be enabled simultaneouslyy

s . a(s)  ~ b(s)

Mutually-exclusive rules are Conflict-free
by definitionby definition

February 16, 2011 L05-11http://csg.csail.mit.edu/6.375

Executing Multiple Rules Per Cycle:
Sequentially Composable rules
rule ra (z > 10);

x <= y + 1; Parallel execution behaves
endrule

rule rb (z > 20);
y <= y + 2;

endrule

like ra < rb

Rulea and Ruleb are sequentially composable if
s . a(s)  b(s)  1. b(a(s))

2 P j ( ()) P j ( ( ()))

- R(rb) is the range of rule rb
- Prjst is the projection
selecting st from the total state

Parallel Execution can
also be understood in
terms of a composite

rule

2. PrjR(rb)(b(s)) == PrjR(rb)(b(a(s)))

rule ra_rb;
if (z>10) then x <= y+1;
if (z>20) then y <= y+2;

endrule

February 16, 2011 L05-12http://csg.csail.mit.edu/6.375

7

Compiler determines if two rules
can be executed in parallel

Rulea and Ruleb are conflict-free if
s . a(s)  b(s) 

D(Ra)  R(Rb) = 
D(Rb)  R(Ra) = 

Rulea and Ruleb are sequentially composable if
s . a(s)  b(s) 

1. b(a(s))
2. PrjR(Rb)(b(s)) == PrjR(Rb)(b(a(s)))

a() b()
1. a(b(s))  b(a(s))
2. a(b(s)) == b(a(s))

() () 
R(Ra)  R(Rb) = 

D(Rb)  R(Ra) = 

These conditions
are sufficient but
not necessary

These properties can be determined by examining the
domains and ranges of the rules in a pairwise manner.

Parallel execution of CF and SC rules does not
increase the critical path delay

y

February 16, 2011 L05-13http://csg.csail.mit.edu/6.375

Conflicting rules
rule ra (True);

x <= y + 1; Assume x and y are initially zero

Concurrent execution of these can produce
x=1 and y=2 but these values cannot be

endrule

rule rb (True);
y <= x + 2;

endrule

ssu e a d y a e a y e o

x 1 and y 2 but these values cannot be
produced by any sequential execution
 ra followed by rb would produce x=1 and y=3
 rb followed by ra would produce x=3 and y=2

Such rules must be executed one-by-one and
not concurrently

February 16, 2011 L05-14http://csg.csail.mit.edu/6.375

8

The compiler issue
Can the compiler detect all the conflicting
conditions?conditions?
 Important for correctness

Does the compiler detect conflicts that do not
exist in reality?
 False positives lower the performance
 The main reason is that sometimes the compiler

cannot detect under what conditions the two rules
are mutually exclusive or conflict free

yes

yes

are mutually exclusive or conflict free
What can the user specify easily?
 Rule priorities to resolve nondeterministic choice

In many situations the correctness of the design is not
enough; the design is not done unless the performance
goals are met

February 16, 2011 L05-15http://csg.csail.mit.edu/6.375

Concurrency in Elastic
pipeline

f1 f2 f3

x
fifo1inQ

f1 f2 f3

fifo2 outQ

rule stage1 (True);
fifo1.enq(f1(inQ.first());
inQ.deq(); endrule

rule stage2 (True);

Consider rules
stage1 and stage2:

Can all three rules
fire concurrently?

fifo2.enq(f2(fifo1.first());
fifo1.deq(); endrule

rule stage3 (True);
outQ.enq(f3(fifo2.first());
fifo2.deq(); endrule

-

February 16, 2011 L05-16http://csg.csail.mit.edu/6.375

9

Concurrency in FIFOs

February 16, 2011 L05-17http://csg.csail.mit.edu/6.375

module mkFIFO1 (FIFO#(t));
Reg#(t) data <- mkRegU();
Reg#(Bool) full < mkReg(False);

One-Element FIFO

Reg#(Bool) full <- mkReg(False);
method Action enq(t x) if (!full);
full <= True; data <= x;

endmethod
method Action deq() if (full);
full <= False;

endmethod
method t first() if (full);
return (data);

n

not empty

not full rdy
enab

rdy
enab

en
q

de
q

FI
FO

m
od

ul
e

return (data);
endmethod
method Action clear();
full <= False;

endmethod
endmodule

February 16, 2011 L05-18http://csg.csail.mit.edu/6.375

10

module mkFIFO (FIFO#(t));
Reg#(t) d0 <- mkRegU();
R #(B l) 0 < kR (F l)

Two-Element FIFO
d1 d0

Reg#(Bool) v0 <- mkReg(False);
Reg#(t) d1 <- mkRegU();
Reg#(Bool) v1 <- mkReg(False);
method Action enq(t x) if (!v1);
if v0 then begin d1 <= x; v1 <= True; end

else begin d0 <= x; v0 <= True; end endmethod
method Action deq() if (v0);
if v1 then begin d0 <= d1; v1 <= False; end

l b i 0 F l d d th d

Assume, if there is only
one element in the FIFO
it resides in d0

else begin v0 <= False; end endmethod
method t first() if (v0);
return d0; endmethod

method Action clear();
v0<= False; v1 <= False; endmethod

endmodule

enq and deq can be
enabled together but
do these methods
conflict ?

February 16, 2011 L05-19http://csg.csail.mit.edu/6.375

method Action enq(t x) if (!v1);
if v0 then begin d1 <= x; v1 <= True; end

l b i d0 < 0 < T d d th d

Two-Element FIFO
Analysis

else begin d0 <= x; v0 <= True; end endmethod
method Action deq() if (v0);

if v1 then begin d0 <= d1; v1 <= False; end
else begin v0 <= False; end endmethod

rule enq if (!v1);
if v0 then begin d1 <= x; v1 <= True; end

Turn methods into rules for analysis

Do rules enq and deq conflict?

February 16, 2011 L05-20http://csg.csail.mit.edu/6.375

else begin d0 <= x; v0 <= True; end endrule
rule deq if (v0);

if v1 then begin d0 <= d1; v1 <= False; end
else begin v0 <= False; end endrule

11

Two-Element FIFO
Analysis cont.
rule enq if (!v1);

if v0 then begin d1 <= x; v1 <= True; end
else begin d0 <= x; v0 <= True; end endrule

d1 d0

What represents the
possibility of

else begin d0 <= x; v0 <= True; end endrule
rule deq if (v0);

if v1 then begin d0 <= d1; v1 <= False; end
else begin v0 <= False; end endrule

rule enq1 if (!v1 && v0);
d1 <= x; v1 <= True; endrule

Split rules for analysis

possibility of
simultaneous enq and
deq ?

February 16, 2011 L05-21http://csg.csail.mit.edu/6.375

d1 < x; v1 < True; endrule
rule enq2 if (!v1 && !v0);

d0 <= x; v0 <= True; endrule
rule deq1 if (v0 && v1);

d0 <= d1; v1 <= False; endrule
rule deq2 if (v0 && !v1);

v0 <= False; endrule

module mkFIFO (FIFO#(t));
Reg#(t) d0 <- mkRegU();
R #(B l) 0 < kR (F l)

Two-Element FIFO
a “more optimized” version

Assume, if there is only
d1 d0

Reg#(Bool) v0 <- mkReg(False);
Reg#(t) d1 <- mkRegU();
Reg#(Bool) v1 <- mkReg(False);
method Action enq(t x) if (!v1);
v0 <= True; v1 <= v0;
if v0 then d1 <= x; else d0 <= x; endmethod

method Action deq() if (v0);
v1 <= False; v0 <= v1; d0 <= d1; endmethod
h d fi () if (0)

one element in the FIFO
it resides in d0

method t first() if (v0);
return d0; endmethod

method Action clear();
v0<= False; v1 <= False; endmethod

endmodule

February 16, 2011 L05-22http://csg.csail.mit.edu/6.375

12

How can we express designs
with such concurrency with such concurrency
properties reliablely?

February 16, 2011 L05-23http://csg.csail.mit.edu/6.375

RWire to the rescue
interface RWire#(type t);

th d A ti t(t)method Action wset(t x);
method Maybe#(t) wget();

endinterface

Like a register in that you can read and write it but
unlike a register

- read happens after write and is Valid only if a
write occurs in the same cycle

- data disappears in the next cycle

February 16, 2011 L05-24http://csg.csail.mit.edu/6.375

13

module mkPipelineFIFO1 (FIFO#(t));
Reg#(t) data <- mkRegU();
Reg#(Bool) full <- mkReg(False);

One-Element Pipeline FIFO
!full rdy

enab

enab

en
q

q

or

!full

Reg#(Bool) full < mkReg(False);
RWire#(void) deqEN <- mkRWire();
Bool deqp = isValid (deqEN.wget()));
method Action enq(t x) if

(!full || deqp);
full <= True; data <= x;

endmethod
method Action deq() if (full);
full <= False; deqEN wset(?);

!empty rdy de
q

FI
FO

m
od

ul
e

This works correctly
in both cases (fifo full full < False; deqEN.wset(?);

endmethod
method t first() if (full);
return (data);

endmethod
method Action clear();
full <= False;

endmethod endmodule

(
and fifo empty)

first < enq
deq < enq

enq < clear
deq < clear

February 16, 2011 L05-25http://csg.csail.mit.edu/6.375

module mkPipelineFIFO1 (FIFO#(t));
Reg#(t) data <- mkRegU();
R #(B l) f ll < kR (F l)

One-Element Pipeline FIFO
Analysis

!full rdy
enab

enab

en
q

q

or

!full

Reg#(Bool) full <- mkReg(False);
RWire#(void) deqEN <- mkRWire();
Bool deqp = isValid (deqEN.wget()));

method Action enq(t x) if
(!full || deqp);

full <= True; data <= x;
endmethod

!empty rdy de
q

FI
FO

m
od

ul
e

Rwire allows us to
create a combinational

method Action deq() if (full);
full <= False; deqEN.wset(?);

endmethod

...

path between enq and
deq but does not affect
the conflict analysis

Conflict analysis: Rwire deqEN allows concurrent execution of
enq & deq with the functionality deq<enq;
However, the conflicts around Register full remain!

February 16, 2011 L05-26http://csg.csail.mit.edu/6.375

14

Solution- Config registers
Lie a little

ConfigReg is a Register (Reg#(a))
R #(t) f ll kC fi R UReg#(t) full <- mkConfigRegU;

Same HW as Register, but the definition
says read and write can happen in
either order
 However, just like a HW register, a

d f i h ld lread after a write gets the old value
Primarily used to fool the compiler
analysis to do the right thing

February 16, 2011 L05-27http://csg.csail.mit.edu/6.375

module mkLFIFO1 (FIFO#(t));
Reg#(t) data <- mkRegU();
Reg#(Bool) full <- mkConfigReg(False);

One-Element Pipeline FIFO
A correct solution

!full rdy
enab

enab

en
q

q

or

!full

Reg#(Bool) full < mkConfigReg(False);
RWire#(void) deqEN <- mkRWire();
Bool deqp = isValid (deqEN.wget()));

method Action enq(t x) if
(!full || deqp);

full <= True; data <= x;
endmethod

!empty rdy de
q

FI
FO

m
od

ul
e

No conflicts around full:
when both enq and deq

method Action deq() if (full);
full <= False; deqEN.wset(?);

endmethod

happen; if we want deq <
enq then full must be set
to True in case enq occurs

Scheduling constraint on
deqEn forces deq < enq

first < enq
deq < enq

enq < clear
deq < clear

February 16, 2011 L05-28http://csg.csail.mit.edu/6.375

15

FIFOs

Ordinary one element FIFOOrdinary one element FIFO
 deq & enq conflict
Pipeline FIFO
 first < deq < enq < clear
Bypass FIFOyp
 enq < first < deq < clear

February 16, 2011 L05-29http://csg.csail.mit.edu/6.375

All in the BSV library

An aside

Unsafe modules
Bluespec allows you to import Verilog

d l b id tif i i th t modules by identifying wires that
correspond to methods
Such modules can be made safe either
by asserting the correct scheduling
properties of the methods or by
wrapping the unsafe modules in wrapping the unsafe modules in
appropriate Bluespec code

Config Reg is an example of an unsafe module

February 16, 2011 L05-30http://csg.csail.mit.edu/6.375

16

Takeaway
FIFOs with concurrent operations are quite
difficult to design though the amount of difficult to design, though the amount of
hardware involved is small
 FIFOs with appropriate properties are in the

BSV library
Various FIFOs affect performance but not
correctness

f h h l lFor performance, concentrate on high-level
design and then search for modules with
appropriate properties

February 16, 2011 L05-31http://csg.csail.mit.edu/6.375

Next lecture : dead cycles

February 16, 2011 L05-32http://csg.csail.mit.edu/6.375

