

Data Movement Control on a PowerPC

Silas Boyd-Wickizer and Asif Khan

What this presentation is about

● Intuition for why multicore caches are
underutilized

● Preliminary design for three new instructions
● Toy benchmarks show improved performance

Caches are crucial for performance

CORE CORE

CORE CORE

Caches are crucial for performance

CORE CORE

CORE CORE

250 cycles

Potential solution is one giant
shared cache

CORE CORE

CORE CORE

Potential solution is one giant
shared cache

CORE CORE

CORE CORE

● Applications have access to entire cache
capacity, no false sharing issues, etc.

Potential solution is one giant
shared cache

CORE CORE

CORE CORE

● Applications have access to entire cache
capacity, no false sharing issues, etc.

50 cycles

Multicore caches are distributed

CORE CORE

CORE CORE

L3

L1
L2

Multicore caches are distributed

CORE CORE

CORE CORE

L3

L1
L2

3 cycles

Multicore caches are distributed

CORE CORE

CORE CORE

L3

L1
L2

3 cycles

13 cycles

Multicore caches are distributed

CORE CORE

CORE CORE

L3

L1
L2

3 cycles

13 cycles

50 cycles

Difficult to use multicore caches
efficiently

CORE CORE

CORE CORE

L3

L1
L2

Hard to access all of on-chip cache

CORE CORE

CORE CORE

L3

L1
L2

size: 1.7 Mbytes

size: 64 Kbytes size: 512 Kbytes

size: 2 Mbytes

Expensive to access far away
caches

CORE CORE

CORE CORE

L3

L1
L2

Expensive to access far away
caches

CORE CORE

CORE CORE

L3

L1
L2

Expensive to access far away
caches

CORE CORE

CORE CORE

L3

L1
L2

100 cycles

Prototype extensions to hardware:
DMC instructions

● cpush: store a cache line in another core's
cache

● clookup: lookup which cache holds an address

● cmsg: efficient access to data in another core's
cache

● Provide some of the benefits of a single fast
shared cache

Prototype extensions to hardware:
DMC instructions

● cpush: store a cache line in another core's
cache

● clookup: lookup which cache holds an address

● cmsg: efficient access to data in another core's
cache

● Provide some of the benefits of a single fast
shared cache

Memory hierarchy

● Per-core L1 caches
● Inclusive shared L2
● MSI cache coherence protocol

cpush: copy cache line to another
core's cache

● cpush address, core-id
● Copies cache line at address to core with core-id

cpush: copy cache line to another
core's cache

● cpush address, core-id
● Copies cache line at address to core with core-id

● If address is marked S in source L1, copy to
destination, and mark S.

● If address is marked M in source L1, set source
copy to I, copy to destination, and mark M.

● If address is marked I in source L1, ignore

cpush example: thread migration

● To migrate thread:
● source core: saves register values in buffer
● source core: puts buffer on destination core's run-

queue
● destination core: restores register values to execute

thread

cpush example: thread migration

● To migrate thread:
● source core: saves register values in buffer
● source core: puts buffer on destination core's run-

queue
● destination core: restores register values to execute

thread

cpush example: thread migration

● To migrate thread:
● source core: saves register values in buffer
● source core: puts buffer on destination core's run-

queue
● destination core: restores register values to execute

thread

● Source core's cache will hold the buffer and
thread's working set

cpush example: thread migration

● To migrate thread:
● source core: saves register values in buffer
● source core: puts buffer on destination core's run-

queue
● destination core: restores register values to execute

thread

● Source core's cache will hold the buffer and
thread's working set

● Use cpush to move the buffer and thread's
working set

clookup: lookup location of an
address

● clookup address
● returns the nearest core ID that caches address

clookup: lookup location of an
address

● clookup address
● returns the nearest core ID that caches address

● If address is M or S in source L1, return source
ID

● If address is invalid in source L1, it's marked S
or M in L2 directory, return remote ID

● If address in invalid in source L1, and invalid in
L2 directory, return -1

clookup example: cache
management run-times?

● Originally implemented clookup to help test
cmsg

● Some software run-times try to manage cache
contents.

● Maintain a map from object/address to cache

clookup example: cache
management run-times?

● Originally implemented clookup to help test
cmsg

● Some software run-times try to manage cache
contents.

● Maintain a map from object/address to cache
● Essentially tries duplicates hardware state
● Inaccurate
● Expensive

clookup example: cache
management run-times?

● Originally implemented clookup to help test
cmsg

● Some software run-times try to manage cache
contents.

● Maintain a map from object/address to cache
● Essentially tries duplicates hardware state
● Inaccurate
● Expensive

● Replace software map with clookup

cmsg: efficient access to data in
another core's cache

● cmsg address, pc, argument
● Looks up that core that caches address.

● Interrupts the core, causing it to execute the
function at pc, passing argument as an argument.

cmsg: efficient access to data in
another core's cache

● cmsg address, pc, argument
● Looks up that core that caches address.

● Interrupts the core, causing it to execute the
function at pc, passing argument as an argument.

● If address is M or S in source L1, return 0, drop
message

● If address is I in L2, return 0, drop message

● If address is cached in a remote L1, return 1,
send message

cmsg: efficient access to data in
another core's cache

● cmsg address, pc, argument
● Looks up that core that caches address.

● Interrupts the core, causing it to execute the
function at pc, passing argument as an argument.

● If address is M or S in source L1, return 0, drop
message

● If address is I in L2, return 0, drop message

● If address is cached in a remote L1, return 1,
send message

Cost roughly equivalent
to L2 cache miss,
or ½ the cost of
inter-core miss

cmsg example: shared data
structures

● Many applications used shared data structures
● E.g. Linux uses linked lists in many subsystems

do_something:

spin_lock(lock);

item = list_pop(list);

update_metadata(list);

spin_unlock(lock);

cmsg example: shared data
structures

● Many applications used shared data structures
● E.g. Linux uses linked lists in many subsystems

do_something:

spin_lock(lock);

item = list_pop(list);

update_metadata(list);

spin_unlock(lock);

cmsg example: shared data
structures

● Many applications used shared data structures
● E.g. Linux uses linked lists in many subsystems

do_something:

spin_lock(lock);

item = list_pop(list);

update_metadata(list);

spin_unlock(lock);

Three cache misses:
list_entry
list_entry->next->prev
list_entry->prev->next

cmsg example: shared data
structures

● Many applications used shared data structures
● E.g. Linux uses linked lists in many subsystems

do_something:

spin_lock(lock);

item = list_pop(list);

update_metadata(list);

spin_unlock(lock);

● Source calls cmsg(lock, do_something) and
destination calls cmsg(sourceId) to reply
● About the cost of one inter-core cache miss

DMC implementation

● Modified an existing PowerPC implementation
● Runs as on an FPGA as a cycle accurate simulator
● FPGA is important

● Added/modified about 1000 lines of BSV
● Wrote a software run-time in about 2000 lines

of C for testing and benchmarking

Preliminary evaluation

● Can software improve performance using DMC
instructions?
● Thread migration benchmark
● List manipulation benchmark

● Dual core, L2 access 31 cycles, DRAM access 255
cycles

● Caveats: no hardware pre-fetching, no SMT, etc.

cpush improves thread migration
performance

cpush improves thread migration
performance

● Pushing 6 cache lines cuts latency in half
● For more the 6 the messages FIFOs fill up

cmsg improves the performance of
list operations

cmsg improves the performance of
list operations

● Reduce update latency by ½

cmsg improves the performance of
list operations

● Reduce update latency by ½
● More benefit as benchmark updates more meta-data

Future work

● cmsg loose ends
● How to handle multiple address spaces?
● How to deal with fairness?

● When shouldn't applications use DMC
instructions?

● Experiment with real applications

Related work

● Managing multicore caches
● Computation migration systems

Conclusion

● Three new instructions (cpush, clookup, and
cmsg) for managing cache contents

● Promising preliminary results
● Next step: generalize to real workloads

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48

