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What this presentation is about

● Intuition for why multicore caches are 
underutilized

● Preliminary design for three new instructions
● Toy benchmarks show improved performance
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Difficult to use multicore caches 
efficiently
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Hard to access all of on-chip cache
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Prototype extensions to hardware:
DMC instructions

● cpush: store a cache line in another core's 
cache

● clookup: lookup which cache holds an address

● cmsg: efficient access to data in another core's 
cache

● Provide some of the benefits of a single fast 
shared cache
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Memory hierarchy

● Per-core L1 caches
● Inclusive shared L2
● MSI cache coherence protocol



  

cpush: copy cache line to another 
core's cache

● cpush address, core-id
● Copies cache line at address to core with core-id



  

cpush: copy cache line to another 
core's cache

● cpush address, core-id
● Copies cache line at address to core with core-id

● If address is marked S in source L1, copy to 
destination, and mark S.

● If address is marked M in source L1, set source 
copy to I, copy to destination, and mark M.

● If address is marked I in source L1, ignore



  

cpush example: thread migration

● To migrate thread: 
● source core: saves register values in buffer
● source core: puts buffer on destination core's run-

queue
● destination core: restores register values to execute 

thread
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cpush example: thread migration

● To migrate thread: 
● source core: saves register values in buffer
● source core: puts buffer on destination core's run-

queue
● destination core: restores register values to execute 

thread

● Source core's cache will hold the buffer and 
thread's working set

● Use cpush to move the buffer and thread's 
working set



  

clookup: lookup location of an 
address

● clookup address
● returns the nearest core ID that caches address



  

clookup: lookup location of an 
address

● clookup address
● returns the nearest core ID that caches address

● If address is M or S in source L1, return source 
ID

● If address is invalid in source L1, it's marked S 
or M in L2 directory, return remote ID

● If address in invalid in source L1, and invalid in 
L2 directory, return -1



  

clookup example: cache 
management run-times?

● Originally implemented clookup to help test 
cmsg

● Some software run-times try to manage cache 
contents.

● Maintain a map from object/address to cache
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clookup example: cache 
management run-times?

● Originally implemented clookup to help test 
cmsg

● Some software run-times try to manage cache 
contents.

● Maintain a map from object/address to cache
● Essentially tries duplicates hardware state
● Inaccurate
● Expensive

● Replace software map with clookup



  

cmsg: efficient access to data in 
another core's cache

● cmsg address, pc, argument
● Looks up that core that caches address.

● Interrupts the core, causing it to execute the 
function at pc, passing argument as an argument.
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cmsg: efficient access to data in 
another core's cache

● cmsg address, pc, argument
● Looks up that core that caches address.

● Interrupts the core, causing it to execute the 
function at pc, passing argument as an argument.

● If address is M or S in source L1, return 0, drop 
message

● If address is I in L2, return 0, drop message

● If address is cached in a remote L1, return 1, 
send message

Cost roughly equivalent
to L2 cache miss,
or ½ the cost of 
inter-core miss



  

cmsg example: shared data 
structures

● Many applications used shared data structures
● E.g. Linux uses linked lists in many subsystems

do_something:

spin_lock(lock);

item = list_pop(list);

update_metadata(list);

spin_unlock(lock);
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cmsg example: shared data 
structures

● Many applications used shared data structures
● E.g. Linux uses linked lists in many subsystems

do_something:

spin_lock(lock);

item = list_pop(list);

update_metadata(list);

spin_unlock(lock);

Three cache misses:
list_entry
list_entry->next->prev
list_entry->prev->next



  

cmsg example: shared data 
structures

● Many applications used shared data structures
● E.g. Linux uses linked lists in many subsystems

do_something:

spin_lock(lock);

item = list_pop(list);

update_metadata(list);

spin_unlock(lock);

● Source calls cmsg(lock, do_something) and 
destination calls cmsg(sourceId) to reply
● About the cost of one inter-core cache miss



  

DMC implementation

● Modified an existing PowerPC implementation
● Runs as on an FPGA as a cycle accurate simulator
● FPGA is important

● Added/modified about 1000 lines of BSV
● Wrote a software run-time in about 2000 lines 

of C for testing and benchmarking



  

Preliminary evaluation

● Can software improve performance using DMC 
instructions?
● Thread migration benchmark
● List manipulation benchmark

● Dual core, L2 access 31 cycles, DRAM access 255 
cycles

● Caveats: no hardware pre-fetching, no SMT, etc. 



  

cpush improves thread migration 
performance



  

cpush improves thread migration 
performance

● Pushing 6 cache lines cuts latency in half
● For more the 6 the messages FIFOs fill up
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cmsg improves the performance of 
list operations

● Reduce update latency by ½

                                                                                



  

cmsg improves the performance of 
list operations

● Reduce update latency by ½
● More benefit as benchmark updates more meta-data



  

Future work

● cmsg loose ends
● How to handle multiple address spaces?
● How to deal with fairness?

● When shouldn't applications use DMC 
instructions?

● Experiment with real applications



  

Related work

● Managing multicore caches
● Computation migration systems



  

Conclusion

● Three new instructions (cpush, clookup, and 
cmsg) for managing cache contents

● Promising preliminary results
● Next step: generalize to real workloads
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