
Lucas-Kanade Optical Flow Accelerator

Jud Porter Mike Thomson Adam Wahab

May 11, 2011

1 Project Objective

Optical flow algorithms are used to detect the relative direction and magnitude of environmental motion
observed in reference to an “observer.” The “observer” is usually a camera, and motion-quantifying pro-
cessing is done on the differences between two subsequent captured images. Optical flow has a wide range
of applications, especially in robotics. For example, optical flow can be used for pose estimation, obstacle
avoidance (by moving away from regions of high optical flow), and image segmentation (by dividing regions
into areas of similar optical flow, comparable to stereo vision).

The goal of this MIT 6.375 [3] project is to develop an optical flow design that can be incorporated into
the Harvard RoboBee project [2]. This project aims to build micro-mechanical, autonomous, biologically
inspired flapping wing robots. Much research has been done showing the importance of optical flow to the
behavior of real honeybees [7]. Therefore, it is a natural choice of algorithm to implement on a robotic bee.
The main design constraints of this project are weight and power, given the small size of the platform [5].
The estimated power consumption of all sensing and processing in the RoboBee is on the order 10 mW, so
efficient computation is of the utmost importance.

Using a traditional general purpose CPU for this application would consume too much power to be a viable
option. Typical low-power mobile CPUs still consume on the order of several watts of power, order of
magnitude greater than the power budget for this project. A low-power microcontroller might fit within
the power budget, but would not have enough processing power to meet the performance goals required for
stable flight. The only way to achieve the computational efficiency required is through custom hardware
design.

Traditional hardware design however is difficult, time consuming, and expensive. Using BluespecTM [1] to
implement our project allows us to implement, verify, and refine our design much faster than if we had used a
language such as Verilog or VHDL. BluespecTM also allows us to target both ASICs and FPGA systems. We
can leverage FPGAs to verify hardware functionality and to integrate with sensors and components being
developed by other group while the project is still in the development phase. Once the design been fully
tested and integrated on the FPGA, it could be fabricated into an ASIC for maximum performance and
energy efficiency with minimal additional effort.

1

Group 3
Jud Porter, Mike Thomson, Adam Wahab

MIT 6.375, Spring 2011
Lucas-Kanade Optical Flow Accelerator

1.1 Design Requirements

In order for this architecture to be useful for the RoboBee application, it must meet several performance
requirements. The requirements are based on the frequency of actuation and control needed to maintain
stable flight. The RoboBee’s wings flap at around 100 Hz, and can only be controlled at the start of a new
stroke. Therefore, a new optical flow reading must be made every 10 ms, setting the minimum throughput
desired to be 100 frames-per-second (FPS). Initial experiments have shown that a minimum of 64× 64 pixel
camera resolution with 8 bit pixels is required to provide enough accuracy for adequate control. Assuming
that only one new frame needs to be read in per optical flow computation (a frame from the previous
operation can be reused), this equates to a minimum throughput of 100 FPS× (64× 64) Bytes ≈ 400 kB/s.

2 Background

The general aim of optical flow is to quantify the amount of “flow” or visual movement between images.
While many different optical flow algorithms exist, we have implemented the Lucas-Kanade (LK) optical
flow algorithm [6] for this project. LK is an older algorithm, but is well-established and widely used. Many
other algorithms build upon LK or use similar operations, making this a suitable reference point for later
exploring the space of different algorithms.

Optical flow generally starts with the “brightness constraint” assumption. This assumption states that the
brightness of a pixel does not change between frames. There are situations that can cause the brightness
constraint to not hold, such as long times between frames, or occlusions and boundaries, but in general, it
holds for fast frame-rates and low intra-frame motion. The system of equations generated from the bright-
ness constraint alone though is underdetermind (there are fewer equations than unknowns), so additional
assumptions are required in order to solve for the optical flow field. In LK, the additional assumption is that
the optical flow is constant in a small local neighborhood of pixels. LK calculates a dense optical flow field,
meaning that a vector is calculated for every pixel.

Calculating optical flow using LK generally starts with a discrete estimation of the spatial and temporal
derivatives. The spatial derivatives can be calculated using convolution with a Sobel filter. The difference
of the two input images can be used as an estimate of the temporal derivative. Once the derivatives are
calculated, the system of equations shown in Equation 1 is solved for the optical flow field. To do this, the
various per-pixel products of the derivatives are calculated, and the resulting products summed over a small
neighborhood of pixels (3× 3 for example). This neighborhood summation is equivalent to convolution with
a boxcar-type filter. These resulting summations make up the elements of the matrices in Equation 1. This
equation is finally solved to generate the resulting optical flow field.

[∑
I2x

∑
IxIy∑

IxIy
∑

I2y

] [
u1

u2

]
= −

[∑
IxIt∑
IyIt

]
(1)

This algorithm can be computationally expensive, especially as image sizes grow, making it ill suited for
general purpose CPUs. It does have a lot of exploitable data parallelism, however. This makes it amenable
to acceleration. Additionally, the algorithm can be composed of a number of discrete operations, making it
suitable to pipelining.

2 of 22

Group 3
Jud Porter, Mike Thomson, Adam Wahab

MIT 6.375, Spring 2011
Lucas-Kanade Optical Flow Accelerator

3 High-Level Design

Conv2

Conv2

Dt

IM
ul

t

IIS
um

LK
C

om
p

Img 1

Img2

It

Ix

Iy

IxIt

IyIt

IxIx

IyIy

IxIy

∑IxIt

∑IyIt

∑IxIx

∑IyIy

∑IxIy

u

v

Figure 1: High level architecture.

Figure 1 shows a high-level depiction of the computational stages of the Lucas-Kanade accelerator. Initially,
both images are convolved with a Sobel filter in the Conv2 blocks to calculate the x and y derivatives. The
output of the Conv2 modules is averaged element-by-element to generate Ix and Iy. The It block similarly
performs an element-by-element subtraction as an estimate of the time derivative. The resulting values are
passed to the IMult module, which is responsible for calculating the various per-pixel products of Ix, Iy, and
It. These products are sent to the IISum module, which buffers and sums the products over the appropriately
sized neighborhood (3 is used here). Finally, these summations go to the LKComp module, which solves (1)
for the velocity components [u1, u2].

4 Test Plan

The test setup consists of a C++ software testbench, the optical flow implementation, and a SceMi interface
layer using a PCI Express bridge (see Figure 2). This arrangement is similar to the MIPS testbench used
in earlier 6.375 assignments. The testbench runs on the host processor, and the optical flow implementation
can be tested using either simulation or the FPGA. The SceMi PCIe bridge uses ports that expose a chip
reset, a kernel (Sobel image filter), image data, and resulting optical flow data between the testbench and
the DUT.

Figure 3 shows the general execution of the software testbench. When the test starts, a reset and a high-pass
filter kernel must be sent to the optical flow design (via the SceMi interface). Then the testbench sends
image data to the FPGA and receives the resulting optical flow data from the FPGA.

The design is verified by comparing its output data with known-good reference data. Reference data is
generated by running the same image data through a MATLABTMreference design.

3 of 22

Group 3
Jud Porter, Mike Thomson, Adam Wahab

MIT 6.375, Spring 2011
Lucas-Kanade Optical Flow Accelerator

Figure 2: Test setup for the optical flow implementation.

Figure 3: The execution flow of the software testbench.

4 of 22

Group 3
Jud Porter, Mike Thomson, Adam Wahab

MIT 6.375, Spring 2011
Lucas-Kanade Optical Flow Accelerator

5 Microarchitectural Description

5.1 Optical Flow Pipeline

The main pipeline module OFlowPipeline strings the various sub-modules that are required to compute
optical flow. Data is passed between sub-modules via a series of stages connected with FIFOs for which
there are rules to propagate the data. Each stage in OFlowPipeline corresponds to a stage of the LK optical
flow pipeline as presented in Figure 1. Table 1 describes the individual stages.

Stage Description
dt Compute temporal derivative
conv2 to imult Pass results from Conv2 and dt to IMult

imult to iisum Pass results from IMult to IISum

iisum to lkcomp Pass results from IISum to LKComp

Table 1: Stages comprising OFlowPipeline.

5.2 Temporal Derivative

The approximate temporal derivative of pixel intensity It is evaluated by the DT module which is instantiated
in the OFlowPipeline module. A pair of pixel intensities from the two input frames are passed into this
module via a FIFO. The input values are typecasted to match the output format of the Conv2 module.
The difference of the bit-extended values is then computed and loaded into an output FIFO. The temporal
derivative approximation may be expressed as

It(u, v) = B(u, v)−A(u, v)

where frame B was acquired immediately after frame A.

Extra logic is also included to avoid generating values at the borders of the image. This is required because
the Conv2 module only outputs valid data, it does not produce data at the image boundaries. The same
logic is used in DT to ensure that the output of DT stays synchronized with the output of the Conv2 modules.

The temporal derivative result is read from the output FIFO and passed to the IMult module along with
the output of the Conv2 modules in the conv to imult rule.

5.3 Convolution Module

The convolution module Conv2 convolves a p × p kernel with an n × n image. Mathematically, the 2-
dimensional convolution operation may be expressed as

Ax(u, v) =

p−1∑
i=0

p−1∑
j=0

A(u− i, v − j)Kx(i, j)

where K and A represent the kernel and image matrices, respectively. Parameters u and v represent hori-
zontal and vertical offsets of the kernel’s position with respect to the upper-left corner of A. As the kernel
is incrementally shifted across the image matrix, u and v both vary from 0 to (n− p).

5 of 22

Group 3
Jud Porter, Mike Thomson, Adam Wahab

MIT 6.375, Spring 2011
Lucas-Kanade Optical Flow Accelerator

The main pipeline involves four instantiations of Conv2 in order to concurrently compute the following four
spatial derivatives

Ax = A ∗Kx

Bx = B ∗Kx

Ay = A ∗Ky

By = B ∗Ky

where A and B are two input frames and Kx and Ky are the horizontal and vertical derivative kernels,
respectively. A diagram illustrating how input data is routed amongst the four instantiations is provided in
Figure 4.

A
[1×n2]

B
[1×n2]

Kx
[1×p2]

Ky
[1×p2]

∗
∗
∗
∗

Ax
[1×(n−p+1)2]

Bx
[1×(n−p+1)2]

Ay
[1×(n−p+1)2]

By
[1×(n−p+1)2]

Figure 4: Four instantiations of the convolution module concurrently compute the spatial derivatives of input
frames A and B.

5.3.1 Module Description

Rather than buffering an entire frame prior to performing the convolution, the module computes individual
elements of the convolution result array as the input is streamed in on a pixel-by-pixel basis.

The Conv2 module contains two rules: buffering and processing. As its name suggests, the buffering

rule stores input pixel values in a minimum-length shift register of size 1× [n× (p− 1) + p].

The processing rule computes the sum of products for one element of the convolution result array and
updates the convolution shift parameters u and v. Upon reaching the end of a row, the horizontal shift
parameter u is reset and the vertical shift parameter v is incremented. When the final column of the final
row of the input image has been processed, both u and v are reset in preparation for a new frame. For each
(u, v) pair, the rule computes p2 products comprised of the elements (n× i)...[(n× i) + (p− 1)] of the input
buffer, where i = 0...(p − 1), and elements 0...(p2 − 1) of the kernel storage array. Figure 5 illustrates how
the contents of the input buffer relate to the elements of an input image for two instances.

The processing rule implements a linear inelastic pipeline for convolving subsets of input pixel values with
the filter kernels. A diagram illustrating the pipeline structure and signal routing is included in Figure 6.

6 of 22

Group 3
Jud Porter, Mike Thomson, Adam Wahab

MIT 6.375, Spring 2011
Lucas-Kanade Optical Flow Accelerator

18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

17

25

33

41

49

57

18

26

34

42

50

58

19

27

35

43

51

59

20

28

36

44

52

60

21

29

37

45

53

61

22

30

38

46

54

62

23

31

39

47

55

63

9 10 11 12 13 14 15

16

24

32

40

48

56

8

1 2 3 4 5 6 70

36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18

37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19

17

25

33

41

49

57

18

26

34

42

50

58

19

27

35

43

51

59

20

28

36

44

52

60

21

29

37

45

53

61

22

30

38

46

54

62

23

31

39

47

55

63

9 10 11 12 13 14 15

16

24

32

40

48

56

8

1 2 3 4 5 6 70

u = 2
v = 2

u = 3
v = 2

u 1 2 3 4 5 6 70

1

2

3

4

5

6

7

0
v

∆T

∆T

Figure 5: A minimum-length input buffer (gray) stores pixel values from an input frame (white). For each
(u, v) pair, the processing stage computes the products of select input pixel values and the kernel (red).
The products are summed and (u, v) is incremented, indicated here by ∆T . In this example, n = 8 and
p = 3.

The two rules are mutually exclusive in that the processing rule will not execute unless the minimum-
length input buffer is full and the buffering rule will not shift in a new value until the processing rule has
decremented the counter bufCount, which keeps track of the number of values stored in the input buffer.

5.3.2 Module Interface

Prior to processing any input data, the p× p values comprising kernel K are streamed into the module and
stored as a 1× p2 vector of registers with the following mapping:

K =

 k0,0 · · · k0,p−1

...
. . .

...
kp−1,0 · · · kp−1,p−1

→ K =
[
k0,0 · · · k0,p−1 · · · kp−1,0 · · · kp−1,p−1

]

After initializing, input pixel values are passed into the module via an LFIFO. The relationship between the

7 of 22

Group 3
Jud Porter, Mike Thomson, Adam Wahab

MIT 6.375, Spring 2011
Lucas-Kanade Optical Flow Accelerator

A(u, v)

Kx

Ax(u, v)

Figure 6: The convolution processing stage is accomplished using a linear inelastic pipeline. For a given
set of (u, v), a p× p sub-set of input pixels values A(u, v) is multiplied by the filter kernel Kx. The resulting
products are then summed via an adder tree to obtain one element of the convolution output matrix.

8 of 22

Group 3
Jud Porter, Mike Thomson, Adam Wahab

MIT 6.375, Spring 2011
Lucas-Kanade Optical Flow Accelerator

2-D array representing input frame A and the pixel stream passed into the module is as follows:

A =

 a0,0 · · · a0,n−1

...
. . .

...
an−1,0 · · · an−1,n−1

→ A =
[
a0,0 · · · a0,n−1 · · · an−1,0 · · · an−1,n−1

]

As they are computed, elements of the convolution result array are passed out of the module via an LFIFO.
Details of the interface implementation are included near the end of this section.

5.4 Lucas-Kanade Computation

The results from the previously described modules, which calculated Ix, Iy, and It for each input image, are
fed into a submodule which performs the rest of the calculations to find the optical flow. This submodule
performs the computation shown in Equation 1. The LK computation module is divided into three sepa-
rate submodules (IMult, IISum, and LKComp) to simplify operation, and to allow for easier pipelining and
submodule reuse.

5.4.1 Derivative Product Generation

The Conv2 and DT modules produce the spatial (Ix and Iy) and temporal (It) derivatives respectively.
However, as can be in seen in Equation 1 the products of these values (I2x, I2y , IxIy, IxIt, and IyIt) are
required to solve for the optical flow field. The IMult module is responsible for generating these products.
The current implementation simply reads the three input parameters from a FIFO and uses five multiplier
FIFOs in parallel to generate the output result, which is placed in an output FIFO.

5.4.2 Neighborhood Summation

As previously described, the key assumption in the Lucas-Kanade optical flow algorithm is that the optical
flow in a small local neighborhood of pixels is constant. This is assumption manifests itself as the summation
of each element in Equation 1, and allows an otherwise underdetermined system of equations to be solved.
The IISum module is responsible for performing this summation. In this implementation, a 3 × 3 local
neighborhood is used.

The operation of the IISum module is very similar to the Conv2 module, but is less flexible since it only needs
to sum the values in a neighborhood, rather than convolve them with a filter. To perform this summation,
an appropriate number of input values for each input product must be buffered. The size of the input buffer
is a factor of the image and window sizes (n = 64 and p = 3, respectively) and is expressed as follows

size(FIFO) = n× (p− 1) + p

= 64× (3− 1) + 3

= 131

The products generated by IMult are fed into a separate FIFO for each product. Once the FIFOs are fully
buffered the appropriate elements from each are read and summed together to generate the required elements

9 of 22

Group 3
Jud Porter, Mike Thomson, Adam Wahab

MIT 6.375, Spring 2011
Lucas-Kanade Optical Flow Accelerator

of Equation 1. Figure 7 shows the relationship between the input images, the corresponding FIFO elements,
and the buffered elements used for summation. A tree of adders, generated with the fold command, is used
to perform the reduction of all the elements.

7,3 7,47,2 7,67,0 7,1 7,5 7,7

6,5 6,76,2 6,66,36,0 6,46,1

5,5 5,65,2 5,75,0 5,35,1 5,4

4,6 4,74,0 4,24,1 4,3 4,54,4

3,43,0 3,23,1 3,6 3,73,3 3,5

2,52,42,1 2,72,0 2,2 2,3 2,6

1,61,41,2 1,31,1 1,51,0 1,7

0,70,60,50,40,30,20,10,0

1,21,31,41,51,61,72,02,12,22,32,42,52,62,73,03,13,23,33,4

Σ

Figure 7: The matrix at the top represents the values generated from the multipliers calculating I2x, I2y , etc.
The summation of a subset of these elements is desired. To calculate this, the outputs from the multipliers
are fed into FIFOs, and the appropriate subelements of the FIFOs are selected and summed together. To
enhance this structure, a tree of adders is used to perform the summation.

5.4.3 Matrix Computation

After the neighborhood summation, each element in Equation 1 has been calculated. The LKComp module
takes these values and solves for the final optical flow vector result (~u). One key note about this module
is that it requires fixed-point output due to the division introduced by matrix inversion. Until this point,
only addition, subtraction, and multiplication are used, so all intermediate results are kept as integers. The
output however is a fixed-point result.

10 of 22

Group 3
Jud Porter, Mike Thomson, Adam Wahab

MIT 6.375, Spring 2011
Lucas-Kanade Optical Flow Accelerator

Equation 1 is rewritten below eq:lkmatrixsimp with variables substituted for clarity.[
A B
C D

] [
u1

u2

]
= −

[
E
F

]
(2)

Solving for ~u therefore becomes u1 = −DE−BF
AD−BC and u2 = −−CE+AF

AD−BC . LKComp is responsible for solving for
these equations. It does so by calculating both numerators and the denominator in parallel and places the
results on the input FIFOs of the divider modules.

5.4.4 Pipelined Divider

Initial implementations of the optical flow design used a standard non-restoring division algorithm. However,
this approach only allowed parametrization of the number of iterations per cycle, resulting in a divider that
blocked all future division operations until the current operation was completed. This introduced many
stalls in the pipeline during the division computation, which was undesirable. A more flexible divider was
designed to replace the original one.

The new divider is still a non-restoring implementation, but in addition to specifying how many iterations per
cycle to perform it also can be configured to use multiple pipeline stages so that multiple division operations
can be running in the pipeline simultaneously. This is done by specifying the desired number of blocking
clock cycles per stage. It is essentially a standard pipeline, with small folded pipelines contained at each
stage (see Figure 8). The total number of stages used in the pipelined divider is determined by calculating

s =
bw

ipc× cps

where s is the number of stages, bw is the operands’ bit width, ipc is the number of bit iterations per cycle
and cps is the number of cycles per stage. The number of bits in the operands do not need to be multiples
of the number of divider pipeline stages.

5.5 Host and DUT Interaction

Figures 9 and 10 show the details of the software and hardware interaction. Refer to these figures for the
hierarchy, data types, and interfaces used in the test architecture. This portion of the design is adapted from
the audio pipeline testbench used in the 6.375 course lab assignments.

5.5.1 Software

The software portion of the test architecture is shown in Figure 9. The input data files contain the input
grayscale image pixel data. Two image frames are read at the same time so that two bytes are sent simulta-
neously (one from each frame) to the optical flow pipeline. Each byte represents the grayscale value for one
pixel. The software testbench keeps the pixel data as an 8-bit wide stream as it gets passed to the FPGA
via an InportProxyT object in the SceMi interface.

The OutportProxyT object that receives data via SceMi from the FPGA calls a method every time data
is received so that it can be passed to an output file. Each output data value includes two 16-bit values.

11 of 22

Group 3
Jud Porter, Mike Thomson, Adam Wahab

MIT 6.375, Spring 2011
Lucas-Kanade Optical Flow Accelerator

Figure 8: Pipelined divider architecture.

The two 16-bit values define the u1 and u2 components of the pixel motion vectors. They are written to the
output file as signed fixed-point values (8 bits for the integer portion and 8 bits for the fraction).

Figure 9: Software testbench structure.

12 of 22

Group 3
Jud Porter, Mike Thomson, Adam Wahab

MIT 6.375, Spring 2011
Lucas-Kanade Optical Flow Accelerator

5.5.2 Hardware

The hardware portion of the testbench (Figure 10) is connected to the software via SceMi. The design
implements five SceMi ports: reset, request, dataDone, setkernel, and response. SceMi provides the
PCIe bridge to connect these ports between the software and hardware components of the testbench.

The SceMiLayer module instantiates a wrapper which subsequently instantiates the optical flow DUT and
its interface. The Put and Get interfaces are pre-defined in BluespecTM, and the Action and ActionValue

will put and get the values to the DUT pipeline, respectively.

DDR2 memory and some FIFOs are used to buffer the input data, as shown in Figure 11. All of the input
data is read and stored to the DDR2 module before sending any data to the DUT. The DDR2 module has a
data width of 256 bits. The SceMi sends image data two bytes at a time, which are stored into a FIFO that
is 16 elements deep. The data is removed from the FIFO and stored into a 256-bit shift register (again, two
bytes at a time). Once all 256 bits have been shifted into the register, the register is then written to the
DDR2 module. Read responses from the DDR2 module are saved into a FIFO, which eventually sends the data
to the optical flow design. Data received back from the DUT is buffered in a FIFO before being sent back
to the host (via SceMi).

Figure 10: Hardware testbench structure.

13 of 22

Group 3
Jud Porter, Mike Thomson, Adam Wahab

MIT 6.375, Spring 2011
Lucas-Kanade Optical Flow Accelerator

Figure 11: Input data buffering using DDR2 memory.

5.6 Interface Description

5.6.1 Convolution Module

The Conv2 module implements the 2-D convolution operation. It also includes a testbench (Conv2Test) for
verifying functionality. The Conv2 module interface is as follows:

interface Conv2#(numeric type n, numeric type p, numeric type q);

interface Conv2Engine#(n,p,q) convolve; //Convolution Engine sub-interface

interface Put#(Vector#(TMul#(p,p),Int#(q))) loadKernel; //Load kernel

endinterface

where n is the dimension of the input frame, p is the kernel dimension, and q is the image pixel bit depth.
Details of the convolve convolution engine sub-interface are described below. The loadKernel sub-interface
is used to load the convolution kernel’s elements during initialization. The 2-D kernel’s contents are read in
as a 1-D array (1× p2) of signed q-bit integer values.

The convolution engine has the following sub-interface:

typedef Server#(

Maybe#(UInt#(q)), // Input pixel values one at a time

Int#(TMul#(q,2)) // Output is signed integer with double the input data bit-width

) Conv2Engine#(numeric type n, numeric type p, numeric type q);

The engine streams in the input frame’s pixel values (unsigned q-bit integer) one-at-a-time. The input values
are tagged as valid by the data source. The engine returns the convolution result as a stream of (2× q)-bit
signed integer values.

14 of 22

Group 3
Jud Porter, Mike Thomson, Adam Wahab

MIT 6.375, Spring 2011
Lucas-Kanade Optical Flow Accelerator

The Conv2Test testbench generates an 8× 8 dummy image array containing values numbered 0 to 63. The
kernel is a 3 × 3 array containing zeros with the exception of the first element, which is unity. During
initialization, the testbench transfers the kernel’s values to the Conv2 module as a 1-D array. Following
initialization, the testbench reads individual elements from the image array, tags them as valid, shifts them
into the convolution engine input FIFO. Currently, the testbench obtains the convolution results as they are
made available by the convolution engine.

5.6.2 Lucas-Kanade Computation

The IMult, IISum, and LKComp module interfaces are all implemented using the Server class, which provides
Put and Get interfaces. The inputs and outputs of all three modules are connected to FIFOs, which makes
connecting and passing data in the pipeline straightforward. The challenge is ensuring that the data types
passed between modules are appropriately sized for the data they represent.

IMult The IMult module reads in the input data from the Conv2 and DT modules and generates the
appropriate products of the input. The input is represented by the Is struct, which contains integers
representing the three input derivatives. The output struct is named IProds and contains ints representing
the appropriate products. To ensure that no data is lost, the output data size is doubled to hold all possible
values of the multiplication result.

typedef Server#(

Is#(size),

IProds#(TMul#(size, 2))

) IMult#(numeric type size);

IISum In the case of IISum, the input and output are both represented with the IProds struct. This struct
contains the five products generated. In this case, BITWIDTH IISUM OUT is twice the size as BITWIDTH IISUM IN,
again, to ensure that no precision is lost due to overflow.

typedef Server#(

IProds#(BITWIDTH_IISUM_IN),

IProds#(BITWIDTH_IISUM_OUT)

) IISum#(numeric type n); // n is input image size

LKComp The last module, LKComp takes in the IProds output from IISum, and produces two fixed point
values. The results are contained in the OF struct, which is instantiated with BITWIDTH LKCOMP OUT as both
the integer and fixed point sizes.

typedef Server#(

IProds#(BITWIDTH_LKCOMP_IN),

OF#(BITWIDTH_LKCOMP_OUT, BITWIDTH_LKCOMP_OUT)

) LKComp;

15 of 22

Group 3
Jud Porter, Mike Thomson, Adam Wahab

MIT 6.375, Spring 2011
Lucas-Kanade Optical Flow Accelerator

5.6.3 Pipelined Divider

The pipelined divider interface has one Put interface (for the division operands) and one Get interface (for the
division result). The module also has two parameters: itersPerCycle and cyclesPerStage, as previously
described in Figure 8. The interface is polymorphic, including support for fixed point types. The divider’s
interface is defined as follows:

typedef Server#(

Tuple2#(word, word),

Tuple2#(word, word)

) DividerPipelined#(type word, numeric type itersPerCycle, numeric type cyclesPerStage);

interface Put request = toPut(stgFIFOs[0]);

interface Get response = toGet(stgFIFOs[numStages]);

5.6.4 SceMi Testbench

The SceMi testbench has been set up to pass data from two input data files to the DUT, by first buffering the
data to the DDR2 module. The interface for the DDR2 module is a 256-bit Put/Get interface that provides and
retrieves data to/from the memory. The module that connects the SceMi with the DUT is called PassThru.
The interfaces for the PassThru module are shown below:

typedef Server#(

Bit#(px_data_size),

VelOutput

) PassThru#(numeric type px_data_size, numeric type px_vec_size);

interface SettablePassThru#(

numeric type px_data_size,

numeric type px_vec_size

);

interface PassThru#(px_data_size, px_vec_size) passthru;

interface Put#(KernelPacket) setkernel;

interface Put#(Bit#(32)) dataDone;

interface DDR2Client ddr2;

endinterface

5.6.5 Functionality

Verification of the optical flow module has been performed by comparing the results with a reference
MATLABTMimplementation of the algorithm. Functionality has been verified for a sequence of 64 × 64
input images generated from the Yosemite optical flow test sequence [4] using the SceMi simulator. The
Yosemite sequence is a commonly used sequence of images with available ground truth that can be used to

16 of 22

Group 3
Jud Porter, Mike Thomson, Adam Wahab

MIT 6.375, Spring 2011
Lucas-Kanade Optical Flow Accelerator

test accuracy. Since the input images are larger than 64 × 64, a subimage of the full sequence is used to
generate test inputs of the desired size.

A number of unexpected issues were encountered when testing.

1. The original input image consisted of a moving vertical gradient pattern. When testing with this
pattern, the outputs appeared to be overflowing, as the result was all ones. However, it was determined
that this was due to a divide by 0 issue. This occurred because the input images generated singular
matrices, which the module would then try to invert. Since the determinant of these matrices was 0,
a divide by 0 resulted. The solution was to use a different input pattern which would not result in
this error occurring. A better way to handle this is to have the divider output 0 when a divide by 0
is encountered, since from the perspective of performance of the robot, it’s safer to assume 0 optical
flow instead of max optical flow. Another solution is to add a flag indicating that a divide by 0 has
occurred, and to ignore the output. It’s also possible to add a small amount of random noise to the
input, to help prevent this case.

2. The initial stage of the pipeline calculates Ix and Iy using the convolution module, and It using a
different method. The convolution module includes logic to avoid outputting invalid values around the
edges. However, the It calculation did not include such logic. This resulted in the indices of the pixels
used for the It calculation to not match those used by Ix and Iy.

3. At the end of the calculation, there is a large multiplication that occurs. The results from this mul-
tiplication were being stored in an Int of a larger bit size (extend(A*B)), however, the multiplication
occurred at the input size of the multiplicands. This resulted in the product overflowing, even though
it was sized correctly. The solution was to extend A and B before multiplying to ensure this overflow
did not occur.

4. During initial testing, the values generated by the module were correct, but execution was ending too
early and not generating the expected number of outputs. The solution was to pad the input with
additional 0s to flush out the pipeline. This occurred because the IISum module did not originally
perform valid index checking. It therefore generated results even at edges or before enough data was
fully buffered. Later, the IISum module was updated to add additional boundary checks, to ensure
that only valid data was produced. Therefore, no extra values were required to be pushed into the
pipeline to get the appropriate number of results.

Functionality has been verified, but there are a few areas where verification could be improved. Currently,
the test module does not include automatic value checking. Instead the output results are verified by hand.
While this works acceptably for small image size, it does not scale well as image size and count increases.
Adding output verification is a priority for future work to ensure functionality as further modifications to the
design are made. Another issue is that the MATLABTM implementation is not currently bit accurate. Some
work has been done to resolve this using the Fixed-Point Toolbox, but has not yet been completed. This
would also allow us to do experiments with tradeoffs between bit-width and accuracy at a higher level.

6 Implementation Evaluation

We compiled the Bluespec design using version 2011.01.beta1 of the Bluespec toolchain. FPGA synthesis
was performed using Xilinx ISE 11.5 and targeted the XUPV-LV110T board. Results from synthesis are
presented below.

17 of 22

Group 3
Jud Porter, Mike Thomson, Adam Wahab

MIT 6.375, Spring 2011
Lucas-Kanade Optical Flow Accelerator

Module Slice Registers LUTs DSP48E
Total (SceMi + Pipeline + DDR) 42911 (62%) 56435 (82%) 29 (45%)
OFlowPipeline 29907 45521 29
Conv2 112 366 0
IISum 1986 2595 0
IMult 89 1711 5
LKComp 161 516 24
divPipelined 13466 20370 0

Table 2: Total pipeline device utilization.

6.1 Convolution Module

In linear pipelined form, the four concurrent implementations of the convolution module utilized the majority
of DSP48E slices, where utilization scaled as 4 × p2. Recognizing that the kernel values for a Sobel filter
(p = 3) consist of ±2,±1, and 0, the multiplication operation was replaced by simple logic. Specifically,
multiplication by 2 was replaced with a single bitshift, and negation is accomplished by evaluating the two’s
complement of a given value. This implementation requires no DSP48E slices at the cost of generality.

When computing the sum of products, the BluespecTM fold() function was used to automatically generate
an appropriately sized binary adder tree during compilation. Initially, it was expected that an adder tree
module would have to be designed, thus the existence of this function greatly reduced the time required for
design and debugging of the convolution module.

6.2 Full Pipeline

The current state of the design successfully completes synthesis and place-and-route. The current design has
bits flowing end-to-end both when run in simulation and when run on the FPGA.

6.2.1 Area

Table 2 shows the slice, LUT, and DSP48E (multiplier) usage for the synthesized design with 64× 64 input
images. The total utilization, along with utilization of several of the submodules is presented. The design
is able to complete synthesis and fits on the FPGA. The DSP48Es are currently close to fully utilized with
the Conv2 module using a large percentage of the total.

6.2.2 Timing

The reported maximum frequency from synthesis is 71.018 MHz. The current critical path is in the divider.
This could be adjusted by changing the number of cycles that the divider uses. However, this frequency
already gives significant margin for meeting the desired throughput, so no further adjustments to the critical
path are necessary.

18 of 22

Group 3
Jud Porter, Mike Thomson, Adam Wahab

MIT 6.375, Spring 2011
Lucas-Kanade Optical Flow Accelerator

6.2.3 Cycle Count

In simulation, the current optical flow pipeline implementation is able to process one optical flow computation
every 96 cycles. For a 64 × 64 pixel resolution, this equates to 205 frames-per-second when running at
71.018 MHz, which is well above our target of 100 FPS. Note that only 3600 computations are performed for
a frame comprised of 4096 pixels. The latency through the pipeline is 607 cycles, or 8.5 µs. When synthesized
on the FPGA, performance characteristics initially matched those observed during simulation. Over time,
the SceMi responses began to stall the pipeline, resulting in degraded performance with only 26 FPS. Future
explorations might fix this discrepancy by multiplexing the DDR2 module so that it also buffers the output
data in addition to the input. Alternatively, one might implement a SceMi output interface that sends a
larger data type so larger data transactions occur during each SceMi response.

6.3 ASIC Synthesis

As a point of reference, we synthesized the generated Verilog for the design using Synopsys Design Compiler,
an RTL to gate synthesis tool. Version D-2010.06-SP1 of the tool was used. This tool can also generate
preliminary area and power estimates. The design was synthesized for UMC 130 nm process, with a supply
voltage of 1.2 V, at a target frequency of 50 MHz. The reported area for the design was estimated to be
55 350 µm2. Static power was estimated as 1.8296 mW and dynamic power was estimated as 3.6967 mW, for
a total reported power consumption of 5.5263 mW. This compares favorably with the original design target
of 10 mW, and using a more modern process would lower power consumption further.

One issue encountered is that synthesis did not appear to complete correctly, with warnings about unresolved
references to FIFOL blocks. Unfortunately, the current standard cell library we have available for synthesis
does not include an implementation for LFIFO modules, so it is unlikely that the design could be implemented
without some modification to the original implementation. Replacing LFIFOs with FIFOs would likely solve
the issue, but would add additional cycles into the pipeline.

7 Design Exploration

Key performance metrics of this algorithm are frame rate (maximum throughput), power consumption, area,
and memory usage. The design should aim to meet the desired performance requirement (∼100 FPS) while
minimizing the other metrics. There are several places where the amount of parallelism and reuse can be
varied. There is great opportunity for design tradeoff exploration. The straightforward approach would be
to implement separate, parallel modules for each of the computations previously described. However, this
would result in a design with potentially large area, and might not fit on the FPGA.

To improve upon this, we explored the amount of pipelining possible in the algorithm. For example, since
the x and y derivative values are reused only for the pixels in the surrounding neighborhood, the amount
of temporary storage can be reduced by a significant amount. Our aim was to find the amount of module
reuse to maximally reduce area that still allows the design to meet the minimum performance requirements.

19 of 22

Group 3
Jud Porter, Mike Thomson, Adam Wahab

MIT 6.375, Spring 2011
Lucas-Kanade Optical Flow Accelerator

7.1 Convolution Module

Two different architectures were explored for the processing stage of the convolution module. A set of two
adder trees provides a high-throughput design for performing the convolution sums.

A semi-circular pipelined variant of the original linear inelastic pipelined convolution module was added.
The original structure required p2 concurrent multiplications when computing one element of the convolution
output matrix. The so-called semi-circular structure requires only p concurrent multiplications but requires
p cycles to compute one element of the convolution result. A block diagram illustrating the semi-circular
architecture is provided in Figure 12.

A(u, v)

Kx

Ax(u, v)

Figure 12: The semi-circular convolution pipeline architecture reuses multipliers, at the expense of increased
LUT and slice register utilization.

Table 3 compares the overall device utilization when the pipeline is synthesized using the linear inelastic and
semi-circular convolution modules. DSP slices that are no longer required for the semi-circular convolution
stage may instead be used elsewhere in the pipeline.

Totals Linear Semi-circular Linear-bitwise
DSP48E 36/64 (56.2%) 12/41 (29.3%) 0/29 (0%)

LUTs 848/56547 (1.5%) 8472/64464 (13.1%) 1464/57005 (2.6%)
Slice Registers 348/42728 (0.8%) 4800/46831 (10.3%) 448/42911 (1%)

Table 3: Percent of design utilization for various convolution pipeline structures (n = 64, p = 3). Each value
represents four instantiations of Conv2.

20 of 22

Group 3
Jud Porter, Mike Thomson, Adam Wahab

MIT 6.375, Spring 2011
Lucas-Kanade Optical Flow Accelerator

The architecture selected for the final design implements the linear pipeline architecture, however the multi-
plications have been replaced by bitwise operations by exploiting the type of kernel used in this application.
This design provides the benefits of high-throughput without requiring any DSP48E slices.

7.2 Lucas-Kanade Module

The bulk of the Lucas-Kanade computation module is in the neighborhood summation (IISum) submodule.
Therefore, this submodule was a primary focus for potential design exploration. Currently, each of the 5
products from the previous submodule are buffered in individual line buffers. These line buffers are currently
implemented as arrays of registers. Since using slices for storage can be very expensive on the FPGA, this
may not be the ideal design. A possible solution could be to use the FPGA’s BRAMs to hold the line
buffers. The use of BRAMs should be more space efficient on the FPGA, but will complicate the interface
and perhaps add some latency as not all elements will likely be able to accessed in a single cycle. However,
the design was not sufficiently constrained by slice utilization to warrant this modification, and so remains
an item for future work.

7.3 Divider Module

The divider takes up a large portion of the overall FPGA registers and LUTs. As such, there was interest to
explore how the different divider parameters would affect the area usage. The itersPerCycle parameter was
kept at 1 because increasing its value had too large of a negative impact on the maximum clock speed. This
exploration therefore consisted of only changing the cyclesPerStage parameter. There is a roughly linear
relationship between the cyclesPerStage divider module parameter and the area used by the dividers. The
cyclesPerStage parameter was tested with values of 16, 20, 24, 32, and 48. Table 4 shows the resulting
resource utilization. Note that the input operands are 48 bits wide, so using a cyclesPerStage value of 48
generates a single folded pipeline stage that fully blocks newer operations until it is completely finished with
current operation. cyclesPerStage was chosen to be 16 since it allows for the more pipeline stages than
any of the other options in the table, thus increasing the throughput the most. Using values less than 16
would tend to have timing errors reported during synthesis, so lower values were avoided.

cyclesPerStage: 16 20 24 32 48
DSP48E 0 0 0 0 0

LUTs 40693 (59%) 33694 (49%) 26669 (39%) 19635 (28%) 12626 (18%)
Slice Registers 26940 (39%) 22286 (32%) 17628 (26%) 12972 (19%) 8316 (12%)

Table 4: Total device utilization for two divider pipeline structures (n = 64, p = 3).

7.4 SceMi Testbench

There were two main areas of planned exploration for the SceMi testbench. First, evaluating how the
performance is affected by writing more or less data to the RAM before transitioning to read mode. Second,
how large to make the FIFOs that sit between the RAM and the DUT.

To address the write-to-read transition question, it was concluded that it would be best to try and mimic
the streaming of data from a camera, making it necessary to try to separate the DUT performance from the

21 of 22

Group 3
Jud Porter, Mike Thomson, Adam Wahab

MIT 6.375, Spring 2011
Lucas-Kanade Optical Flow Accelerator

SceMi-to-DDR performance. Therefore, the entire image data files are buffered into the DDR before reading
any of it back to the DUT. The exploration regarding sizes of the FIFOs after the DDR was not needed
because the large output FIFO that is already part of the DDR2 module design provided sufficient read buffer
space.

8 Conclusion

Overall this project was a success. We were able to fit our design on the FPGA whilst exceeding the target
performance specifications. Initial synthesis results also suggest that the design would satisfy the stringent
power constraints posed by the RoboBee project. Our hope is to eventually include this design as an ASIC
that will serve as the RoboBee brain. The ASIC would be composed of this and other similar accelerators,
with each accelerator targeted at different task or workload. Key questions in that design will be how best
to connect multiple accelerators, and balancing programmability with computational efficiency.

Using BluespecTM in our design flow proved to be invaluable in getting a working system ready in a relatively
short amount of time. It allowed design efforts to focus more on the optical flow algorithm and the associated
design explorations. Additionally, the wide range of reference code and library modules helped provide a
seamless transition from software simulations to FPGA synthesis. These same benefits will be important as
the design is taken further with the RoboBee project and its ASIC implementation.

Acknowledgments

We would like to express our sincere gratitude to Arvind, Richard Uhler, and Abhinav Agarwal for providing
invaluable feedback and guidance throughout the course of this project.

References

[1] Bluespec, Inc., http://bluespec.com, Accessed May, 2011.

[2] Harvard RoboBee Project, http://robobees.seas.harvard.edu, Accessed May, 2011.

[3] MIT 6.375, http://csg.csail.mit.edu/6.375/6_375_2011_www/index.html, Accessed May, 2011.

[4] Yosemite Optical Flow Sequence, http://www.cs.brown.edu/~black/images.html, Accessed May,
2011.

[5] M. Karpelson, J.P. Whitney, G.-Y. Wei, and R.J. Wood, Design and fabrication of ultralight high-voltage
power circuits for flapping-wing robotic insects, to appear: Applied Power Electronics Conf., 2011.

[6] B.D. Lucas and T. Kanade, An iterative image registration technique with an application to stereo vision,
International joint conference on artificial intelligence, vol. 3, 1981, pp. 674–679.

[7] M Srinivasan, S Zhang, J Chahl, G Stange, and M Garratt, An overview of insect-inspired guidance for
application in ground and airborne platforms, Proceedings of the Institution of Mechanical Engineers,
Part G: Journal of Aerospace Engineering 218 (2004), no. 6, 375–388.

22 of 22

http://bluespec.com
http://robobees.seas.harvard.edu
http://csg.csail.mit.edu/6.375/6_375_2011_www/index.html
http://www.cs.brown.edu/~black/images.html

	Project Objective
	Design Requirements

	Background
	High-Level Design
	Test Plan
	Microarchitectural Description
	Optical Flow Pipeline
	Temporal Derivative
	Convolution Module
	Module Description
	Module Interface

	Lucas-Kanade Computation
	Derivative Product Generation
	Neighborhood Summation
	Matrix Computation
	Pipelined Divider

	Host and DUT Interaction
	Software
	Hardware

	Interface Description
	Convolution Module
	Lucas-Kanade Computation
	Pipelined Divider
	SceMi Testbench
	Functionality

	Implementation Evaluation
	Convolution Module
	Full Pipeline
	Area
	Timing
	Cycle Count

	ASIC Synthesis

	Design Exploration
	Convolution Module
	Lucas-Kanade Module
	Divider Module
	SceMi Testbench

	Conclusion

