
MIT 6.375 Project

Viterbi Decoder

Arthur Chang

Omid Salehi-Abari

Sung Sik Woo

May 12, 2011

Abstract

The use of forward error correction (FEC) technique is known to be an e�ective way to increase the

reliability of the digital communication and to improve the capacity of a channel. Convolutional encoder

at the transmitter associated with the Viterbi decoder at the receiver has been a predominant FEC

technique because of its high e�ciency and robustness. However, the Viterbi decoder consumes large

resources due to its complexity, and the decoding load has increased with newer communication standards;

as a result, the hardware solution has become crucial for higher performance and cost e�ectiveness.

A Viterbi Decoder for IEEE 802.16 WiMax Standards (constraint length K = 7, supporting rates of

1/2, 2/3, 3/4, 5/6) has been implemented in Bluespec on an FPGA. The design is based on MATLAB source

code of Viterbi decoder. The decoder throughput has been boosted by using parallel and pipelined

architecture to reach over 150Mb/s. Bluespec and FPGA played a key role in that it remarkably reduces

design e�ort as well as veri�cation time through high-level synthesis.

Background

Error Control Techniques

To improve the reliability of digital communication, error control techniques are typically employed. Gen-

erally, these involve inserting controlled redundancy into the transmitted data, and using this redundancy

at the receiver to detect and correct transmission errors. Consider a binary symmetric channel (BSC) with

cross-over probability as it is shown in Figure 1. When no error control scheme is used (i.e., each bit is

sent without any encoding), the probability of bit error is PE = p . Using a simple coding scheme such as

Triple-repetition code (i.e. send each bit three times 1→ 111 and 0→ 000 ) can help to detect errors and/or

correct them. In this case the probability of a message bit error is:

PE = Pr {2 or 3 code bit �ips}= 3p2(1− p) + p3 = 3p2 − 2p3

As it can be seen, utilizing the coding scheme has improved Bit Error Rate (BER).

1



Figure 1: Binary Symmetric Channel (BSC)

Figure 2: (3,1,2) Convolutional Encoder Block Diagram

Convolutional Codes

Convolutional codes are linear codes that have additional structure in the generator matrix. These encoding

operations can be viewed as digital �ltering, or convolution, operations. Unlike block codes, which take

discrete blocks of k symbols to produce blocks of n symbols that only depend on the k input symbols,

convolutional codes are often viewed as stream codes because they operate on continuous streams of symbols

not partitioned into discrete blocks.

At each clock cycle, a (n, k, m) convolutional encoder, with m memory stages , takes one message symbol

of k bits and produces one code symbol of n bits. Performance of the code can be improved by increasing

m. Convolutional codes can be generated by the convolution of the message sequence with a set of generator

sequences (i.e. g1, g2 ...). Figure 2 shows an example of a (3, 1, 2) convolutional encoder. In this example,

g1, g2 and g3 are 110, 111 and 101, respectively.

Punctured Codes

Punctured convolutional codes are derived from ordinary codes by dropping some output bits based on a

prede�ned puncturing matrix. The resulting code has higher rate but less redundancy, hence lower error

correcting capability.

Viterbi Decoder

The Viterbi algorithm provides a simple method for decoding convolutional codes which is optimal in that

it always �nds the path with the smallest path metric (sum of the branch metrics). Branch metrics are the

2



Figure 3: Trellis Diagram of (3,1,2) Encoder with Viterbi Decoder Result

normed distances between all possible symbols in the code alphabet and the received symbol.

The algorithm can be described as follows:

1. Beginning at time unit i = K, (where K is the constraint length and is equal to the number of memory

plus one), compute the partial path metric

M
(
[r | c]i−1

)
=

i−1∑
l=1

µ (rl | cl)

for the single path entering each state. Store the path (called the survivor) and its metric for each

state. Note that r is the received message from the channel, c is the code sequence that the decoder

concludes has been sent, and µ corresponds to the branch metric function.

2. Increase i by 1. Compute the partial path metric for all paths entering each state by adding the branch

metric (i.e., the number of bits in which received message di�ers from code sequence) entering that

state to the partial path metric of the corresponding survivor at the previous time unit. For each state,

store the path with the smallest partial path metric (i.e. the survivor) together with its metric, and

eliminate all other paths.

3. If i ≤ Nc, repeat step 2. Otherwise, stop. (where Nc is the number of bits in a message sequence)

Figure 3 shows the trellis diagram and the result of Viterbi algorithm for the encoder shown in Figure 2 with

received message of 101 101 101 111 001 110 110. The underlined number at each state shows the partial

path metric of the survivor path at that state. Branches colored red represent eliminated paths. The �nal

survivor path, shown in bold lines in the trellis diagram, has a path metric of 7, and corresponds to the

decoded message sequence of 11001.

3



Figure 4: Block Diagram of Viterbi Decoder

Continuous Decoding

Since a �nal decision on the maximum likelihood path is not made until the entire received sequence has

arrived, this may cause an unacceptably long decoding delay if the message length is long. One practical

alternative is to pick a �x delay l and at level j make a desision on the information block at level j− l based
on the best survivor path at level j. Sliding window with length of 5K will result in near optimal decoding.

Methodology

High-Level Design

The rate 1/2 viterbi decoder has �ve main components as shown in Figure 4. The branch metric unit (BMU)

calculates the branch metrics, which are the normed distances between all possible symbols in the code

alphabet and the received symbol. The path metric unit (PMU), whose core elements are add-compare-

select (ACS) units, performs calculations on the branch metrics to get metrics for 2K paths and selects

the 2K−1 surviving branches based on the branch metrics. Note that the interconnects between ACS units

depend on the speci�c code's trellis diagram. Finally, the traceback decoding unit (TBU) generates the

decoded data bits.

In order to support a higher rate codes derived from a basic rate 1/2 code by using puncturing, a depunc-

turer is added to the viterbi decoder. The depuncturer takes the input bitstream and inserts erasure bits

where bits have been deleted before. Note that these erasure bits do not contribute to the result of the

branch metric unit.

Microarchitectural Description

Depuncture Unit

The system works for a range of code rates such as 1/2, 2/3, 3/4, 5/6, based on a rate of 1/2. The higher code

rates can be derived from the 1/2 code by simply introducing puncturing. On the encoder side, the puncturing

operation deletes certain bits from the encoded stream according to the puncture matrix. On the decoder

side, the depuncture operation inserts the erasure bits at the places where bits were deleted by the puncturer.

The standard puncturing matrices for the rate 1/2 convolutional codes are used and are summarized in Table

1.

Since we always input two bits to the decoder, we can group the two consequent masks together. In this

case the matrix for 5/6 can be de�ned as a 5-element vector of 2-bit values (i.e. MaskG[0], MaskG[1], ...

MaskG[4]). Note that mask matrices for all other rates are submatrix of matrix for 5/6 so we will be able to

4



Rate Puncturing Matrix

1/2

(
1
1

)
2/3

(
1 0
1 1

)
3/4

(
1 0 1
1 1 0

)
5/6

(
1 0 1 0 1
1 1 0 1 0

)
Table 1: Standard Puncturing Matrix for Rate 1/2 Convolutional Code

Figure 5: Microarchitecture of the Depuncture Unit

generate the matrix for each of those rate by knowing the mask matrix for rate 5/6. For example, the mask

matrix for rate 2/3 are MaskG[0] and MaskG[1]. The output of the depuncturer is passed to the branch metric

unit (BMU) to calculates the Hamming distance between the received codeword and all possible symbols in

the code alphabet. Figure 5 shows the detailed diagram for the Depuncture Unit.

Inputs Code3 via Server sub-interface, Bits#(4) via Put sub-interface

Message type Code3 (3-bit) received message from Sce-Mi interface; First bit represent Reset signal

in our system and two other bits are received message(Code).

Rate sets the rate of the decoder. Must be 2 for rate 1/2, 4 for rate 2/3, 6 for rate 3/4, and 10 for rate

5/6. Invalid rates are discarded without changing the system's current rate.

Outputs Maybe#(Tuple2#(Code2, Code2)) via Server sub-interface

Valid represents the reset signal in our signal; propagate it down the viterbi pipeline.

Message type Code2 (2-bit) received message from the channel. Used to calculate Hamming Distance

against all possible codewords.

Mask type Code2 (2-bit) puncturing mask. Used to remove erasure bits' contribution in the branch

metric calculation.

StateVariables

5



Index stores the previous MaskG index values. At initialization and reset, it will be initialized to 0

(indicating �rst entry in MaskG). Index will always stay zero for rate 1/2 but it will be incremented

and reset when it reaches 1, 2 and 4 for rates 2/3, 3/4 and 5/6 respectively.

Rate stores the current rate of the decoder. At initilization, it is unset, and the decoder does not

begin decoding until a valid rate is given.

ErrorHandling None. The depuncturer assume that the transmitter sends multiples of n bits. If not, up

to 1 bit of received message may be discarded without going through the decoder.

Assumptions: Since we are designing a decoder and we would like to examine the maximum throughput

of our decoder, we assumed that the input rate is high enough and it is not limiting the throughput

of our design. We made the assumption that the receiver is receiving bits at a high rate and putting

them into two bu�ers (Internal bu�ers) much faster than what our decoder can take them in. In this

case, at each cycle, we look at the corresponding MaskG (two consequent mask). If it is 11, we took 1

bit from each internalbu�er and deq them to the out put. If the MaskG is 01 or 10, we only take one

bit from one of the internal bu�er and deq it to the output after adding an erasure bit to it.

Branch Metric Unit (BMU)

The branch metric unit (BMU) calculates the Hamming distance between the received codeword and all

possible symbols in the code alphabet. Each Hamming distance block performs an XOR between the received

codeword and the hard-coded symbol �xed at compile time and returns the number of ones in the result as

the Hamming distance via a lookup table. The results are stored in a vector and passed to the path metric

unit (PMU). The detailed diagram of the BMU is shown in Figure 6.

Note that for punctured codes, the erasure mask is used after the XOR to remove the erased bit's

contribution in the BM before we sum up the number of ones as the Hamming distance.

Inputs Maybe#(Tuple2#(Code2, Code2)) via Server Interface

Valid represents the reset signal in our system. Since there are no state variables in the BMU, it is

simply propagated down the viterbi pipeline.

Message type Code2 (2-bit) received message from the channel. Used to calculate Hamming Distance

against all possible codewords.

Mask type Code2 (2-bit) puncturing mask. Used to remove erasure bits' contribution in the branch

metric calculation.

Outputs Maybe#(BranchMetricVector) via Server Interface

Valid represents the reset signal in our system; propagate it down the viterbi pipeline.

BranchMetricVector 4-element vector of 2-bit hamming distance results.

Path Metric Unit (PMU)

The path metric unit (PMU) uses add-compare-select (ACS) cores to calculate and select the surviving

branches based on the previously stored path metrics and the received branch metrics (BM).

6



Figure 6: Microarchitecture of the Branch Metric Unit (BMU)

One registered vector of size 2K−1 is de�ned to store the path metrics (PM) for previous states. Each

element of this vector is a Maybe type, containing the value of the path metric up to the previous state.

A second temporary vector of size 2K−1 by 2 is de�ned to hold the result of the ACS, which contains the

smaller PMs out of the two possible previous states as well as the previous state (survivor) that resulted in

the smaller PM.

Two helper functions are written in Bluespec to generate lookup tables to simplify the task of imple-

menting the PMU. The �rst function is the previous state function, which returns the two possible previous

states for the current state of interest. This allows static, at compile time, generation of interconnects from

the stored PM registers to the ACS units, each corresponding to a speci�c current state. The second helper

function is the encoder output function, which returns the encoder output bits given the previous state and

the current state. This again enables static generation of the necessary interconnects from the BM inputs

to the ACS units. Figure 7 shows the detailed diagram for the PMU.

Note that if both PMs from the two possible previous states are tagged invalid, then the current state will

be tagged invalid. If one of the PMs from the two possible previous states is tagged invalid, then the valid

path is automatically taken for calculating the new PM. Finally, if both are tagged valid, then the normal

add-compare-selct is performed, where the two possible PMs are updated with the received BMs, and the

smaller one is selected as the new PM. The new PM and its previous state will be passed to the minimum

state unit. Finally, the new PM will be written back to the registered vector at the end of the clock cycle.

In summary, he path metric unit consists 2K−1 ACS units with interconnects generated statically. Since

PM for each state depends on the PM for the previous state, pipelining is not applicable for this block.

Inputs Maybe#(BranchMetricVector) via Server Interface

Valid represents the reset signal in our system. When Invalid, the previous path metrics are reset.

BranchMetricVector 4-element vector of 2-bit hamming distance results.

Outputs Maybe#(PathSampleVector) via Server Interface

Valid represents the reset signal in our system; propagate it down the viterbi pipeline.

PathSampleVector 64-element vector of Maybe#(Tuple2(State, PathMetric)). Each element repre-

sents a state and contains the state's minimum path metric value (8-bit) and the previous state

7



Figure 7: Microarchitecture of the Path Metric Unit (PMU)

(6-bit) that led to the current minimum path metric. Note that at initialization, only state 0 is a

valid state, and more states become valid as we traverse down the trellis in the forward direction;

Maybe type is used to capture this.

StateVariables

prevPM stores the previous path metric values. It a 64-element of Maybe type PathMetric (8-bit).

At initialization and reset, state 0 is initialized to be valid with PM of 0 while all other states are

tagged Invalid.

Assumption In the process of Add, Compare, and Select (ACS), when the two path metrics are the

same, priority is given to the previous state with a leading 0. i.e., previous state xxxxx0 has priority

over previous state xxxxx1. This is chosen so that the result would match MATLAB's vit.c C-MEX

implementation.

Minimum State Unit (MSU)

In order avoid introducing additional delay in either the PMU or the TBU, the job of searching for the

current state with the minimum path metric has been given to a dedicated module. The minimum state

unit (MSU) has been implemented and inserted between the PMU and the TBU. The MSU takes the output

PMs from the PMU and �nds the state with minimum PM to output to the TBU. In addition, the MSU also

has to pass the previous state vector from the PMU to the TBU. Since the MSU has to �nd the minimum

state out of 64, a 6-stage is used with pairwise comparison in all stages. Any state with an invalid PM is

automatically assigned the maximum possible PM (255 in 8-bit case), so they are out of the running for the

minimum state.

Inputs Maybe#(PathSampleVector) via Server Interface

8



Valid represents the reset signal in our system. Since there are no state variables in the MSU, it is

simply propagated down the viterbi pipeline.

PathSampleVector 64-element vector of Maybe#(Tuple2(State, PathMetric)). Each element repre-

sents a state and contains the state's minimum path metric value (8-bit) and the previous state

(6-bit) that led to the current minimum path metric.

Outputs Tuple3#(State, StateSampleVector, Reset) via Server Interface

State returns the result of the minimum state unit.

StateSampleVector 64-element vector of State (6-bit). Each element represents a state and contains

previous state that led to current state from the result of ACS. This is generated by stripping the

PathMetric in the input PathSampleVector since TBU does not need that information given the

minState is already calculated.

Reset propagate reset down to the TBU. A value of 1 would begin reset sequence for TBU.

Assumption In the process of searching for the state with minimum path metric, when the two path metrics

are the same, priority is given to the state with a higher index, i.e. state 63 has the highest priority

and state 0 has the lowest priority. This is chosen so that the result would match MATLAB's vit.c

C-MEX implementation. Note that this is not the optimal choice, as state 63 represents the unlikely

long sequence of 1's from the input. But this is convenient as veri�cation can be done by directly

comparing the output to MATLAB's decoded output.

Traceback Unit (TBU)

The traceback unit (TBU) estimates the sequence of the original message by tracing back the decisions made

by the PMU. It performs the traceback of depth 1 at each cycle, indicating that it takes 5K cycles to perform

the traceback of depth 5K. To perform the traceback, a state history table of size 2K−1 by 10K is generated

by storing the vector of survived previous states sent from the MSU. The reason why the size of the table is

10K while the depth of traceback is 5K is that it takes 5K cycles to traceback, so that each element should

remain in the table for 5K more cycles. Note that whenever a new input comes, the whole table is shifted

and the new input is stored as the �rst element, whereas the last input is discarded.

When the traceback of depth 5K is completed, the traceback unit uses the last two states to generate

1-bit decoded output. To this end, the traceback unit looks up the input table, which determines the input

of the convolutional encoder given current state and next state. The dimensions of the table is 2K−1 by

2K−1. It should be noted that the input table is statically generated at the beginning, whereas the history

table is dynamically generated and updated during the traceback. Figure 8 shows the detailed diagram of

the TBU.

Inputs Tuple3#(State, StateSampleVector, Reset) via Sserver Interface

State stores the result of the minimum state unit. Tracing back starts from this state.

StateSampleVector 64-element vector of State (6-bit). Each element represents a state and contains

previous state that led to current state from the result of ACS.

Reset represents the reset signal in our system. A value of 1 would reset count to 0 and �ush the last

36 outputs.

9



Figure 8: Microarchitecture of the Traceback Unit (TBU)

Outputs DecodedMsg via Server Interface

DecodedMsg: 1-bit output decoded by tracing back 35 StateSampleVectors and looking up the input

table with the last two States.

StateVariables

historytable: 70-element vector of StateSampleVector, through which the traceback of depth 35 prop-

agates. Each element of the vector represents a 64-element vector of the previous state that led

to current state from the result of ACS. Whenever a new input arrives, every element in the table

is shifted. The new input is stored as the �rst element, whereas the last element is discarded.

middlestate: stores intermediate states during the traceback. Since tracing back for generating 1-bit

decoded output takes 35 cycles, 34 intermediate states need to be stored.

count: stores how many elements are stored in the history table. It counts up to 71 and stops

increasing, indicating the table is full and it is ready to output a decoded message. At initialization

and reset, count is set to be 0.

check�ush,endcount: when reset signal is received, check�ush is set to be 1 and the traceback unit

starts to �ush the last 36 outputs. While endcount is counting from 0 to 35, the traceback unit

performs the same tracing back operation except that there is no new input. When �ushing is

completed, check�ush returns back to 0 and the traceback unit waits for a valid input. Endcount

is reset to 0 when a valid input comes so as to prevent the traceback unit from �ushing the last

36 outputs every time reset signal is received.

Interconnection

Just as general pipelined architectures, the interfaces between DPU, BMU, PMU, MSU, and TBU all use

standard Get and Put interfaces from Server interface.

Design Exploration

Since the 8-bit path metrics are always increasing, there is potential for over�ow for long messages with

many errors. Thus, a reset scheme has been implemented. One easy way to implement such function is to

10



Viterbi Decoder w/ 7-Stage TBU Viterbi Decoder w/ 35-Stage TBU

Number of Slice Registers 28% 38%
Number of Slice LUTs 21% 23%
Critical Path Module TBU MSU
Clock Frequency 72.020MHz 150.400MHz

Table 2: Complete Viterbi Decoder Synthesis Results after Pipelining TBU

set a threshold such that when all the stored PMs pass the threshold, the threshold value is subtracted from

all the PMs, thereby returning the minimum PM to 0. To avoid having to perform comparisons and increase

critical path delay, we set the threshold using only the MSB. A new rule is added in the PMU to perform

the reset when all MSBs of the stored PM values are 1. The reset action is simply resetting all the MSBs to

0 (i.e. if all the stored PM values are greater than 128, then 128 is subtracted from all of them).

The traceback unit has also been pipelined. The initial version performed combinational logic minimum

state search and all 5K traceback lookup chain in one clock cycle. As a result, the traceback was the critical

path and limited the maximum clock frequency to 10.48MHz. In order to increase the clock frequency, a

pipelined minimum state unit (MSU) has been implemented. The MSU takes the output PMs from the

PMU and �nds the state with minimum PM to output to the TBU. In addition, the MSU also has to pass

the previous state vector from the PMU to the TBU.

With the MSU, the TBU no longer needs knowledge of the path metrics. Thus the TBU's has been

updated so that the state history table only stores the previous state vectors. This greatly reduced the size

of the state history table and decreased the compile time signi�cantly. The traceback function has also been

pipelined into 7 and 35 stages. So in each clock cycle, the TBU traces back 5 and 1 entries respectively.

Design Veri�cation

Initially, to ensure correct functionality of each block, small Bluespec testbenches are written to verify

simple test cases with known outputs given short input vectors. This allows us to con�rm correctness

of each block before connecting them together to build the full decoder. After block-wise correctness is

veri�ed, we connect all the modules together to perform top-level testing by comparing the outputs of the

Bluespec implementation against the outputs of the reference software implementation. MATLAB functions

are written to encode randomly generated message into a convolutional code . The code is written to an

input �le and imported to the Bluespec implementation using the TestDriver module. The TestDriver then

writes the output of the Viterbi Decoder into an output �le, and the output can be compared to the original

message to verify correctness.

After system correctness is veri�ed for uncorrupted code, more complicated testing has been done to

verify its error-correcting capabilities. We simulate AWGN channel with di�erent SNRs in MATLAB to

corrupt our coded bits. The corrupted code are then fed to both the Bluespec implementation and the

Viterbi Decoder in the MATLAB Communications Toolbox for decoding. Bit-by-bit comparison has been

performed to verify correct functionality. Finally, Sce-Mi interface has been implemented to verify that our

design works both in simulation and on the FPGA for all proposed rates.

To summarize, the testbench contains 4 main blocks: random data generator, convolutional encoder,

channel model, and Viterbi decoder. The random data generator generates random messages to be encoded

by the convolutional encoder. These encoded messages are then corrupted by passing through an additive

11



Figure 9: Testbench Setup

white gaussian noise (AWGN) channel model before going to both the reference implementation and our

Bluespec implementation of the Viterbi decoders. Both write their output vectors to �les so we can compare

them to verify correctness. Figure 9 shows the testbench block diagram as described above.

Performance Benchmark

In the �rst fully functional implementation, a single-bit in and single-bit out interface was used. However

the input rate severely limited the throughput of the decoder since it is not supplying bits as fast as the

decoder can process. In the rate 1/2 case, the decoder can calculate 1 output bit from every 2 input bits; if

input is 1-bit per cycle, the viterbi pipeline is then idling every other cycle.

Thus, to push our decoder to its throughput limit, input is chosen to be 2 bits by assuming the receiver

can receive and bu�er inputs much faster than the viterbi decoder can process. Note that even though 2 bits

are needed for every output for rate 1/2 code, sometimes only 1 bit is needed since erasure bit is inserted to

reconstruct a 2-bit message for higher rates codes. For example, in the rate 2/3 case, in the �rst clock cycle

the mask is 11, so 2 bits are needed. But in the second cycle the mask is 01, so only 1 bit is needed and

erasure bit is inserted. Therefore, a �exible FIFO interface is implemented to allow the decoder to request

either 1 or 2 bits every cycle.

A separate performance benchmark is set up in Bluespec without using the Sce-Mi interface as the Sce-Mi

interface cannot input bits from a �le fast enough. The block diagram for the performance benchmark is

shown in Figure 10. A message generator is implemented in Bluespec using the LFSR module to generate

pseudo-random message bits. Two counters are used in the benchmark to characterize the performance:

latency counter and cycle counter. Both counters start counting up each cycle once the LFSR has been

seeded. The latency will count up until the �rst output comes out of the viterbi decoder while the cycle

counter will count up until the last output comes out of the viterbi decoder.

To summarize the result of the performance benchmark, the latency is �xed at 88 cycles, as determined

by the number of pipeline stages present in the system. The cycle count is equal to the latency plus the

number of outputs, which translate to one output bit per cycle at steady state. As such, we conclude that

our decoder can maintain an output throughput of 150Mb/s at 150MHz, which is the highest achievable

12



Figure 10: Performance Benchmark Setup

clock frequency from FPGA synthesis result on a Xilinx Virtex 5.

Lastly, we compare the hardware throughput to that of a software implementation. Using the C-MEX

function in MATLAB, it takes more than 4 seconds to decode 1.5Mb for all rates on a PC with 2 Cores at

2.8GHz Frequency. This means that decoding 150Mb would take more than 400 seconds. Thus, our hardware

implementation of the Viterbi Decoder is more than 400× faster than the software implementation.

References

[1] Viterbi, A.;, �Error bounds for convolutional codes and an asymptotically optimum decoding

algorithm,� Information Theory, IEEE Transactions on, vol.13, no.2, pp. 260-269, April 1967

[2] B. Sklar, Digital Communications: Fundamentals and Applications, 2nd edition, Prentice-Hall,

2001.

[3] John G. Proakis, Digital Communications, 5th edition, McGraw-Hill, 2008.

[4] Pedroni, B.U.; Pedroni, V.A.; Souza, R.D.;, �Hardware implementation of a Viterbi decoder

using the minimal trellis,� Communications, Control and Signal Processing (ISCCSP), 2010

4th International Symposium on, vol.,no., pp.1-4 3-4 March 2010.

[5] http://en.wikipedia.org/wiki/Viterbi_decoder

[6] http://www.dsplog.com/2009/01/04/viterbi/

[7] Lattice Semiconductor Corporation, �Block Viterbi Decoder,� Datasheet, Oct. 2004.

13


