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1 PROJECT OBJECTIVE

Our objective is to identify the tones in polyphonic music (i.e. music with multiple pitches play-
ing simultaneously) in realtime. Monophonic pitch detection has good existing solutions, but
polyphonic pitch detection implementations can have high error rates and slow processing times.

We aim to achieve an implementation that can be used in realtime transcription of music. In
conjunction with a beat detection module, our pitch detection module would be able to engrave
live or recorded music. We would be able to transcribe an improvised jazz session or engrave
Youtube audio into sheet music for practicing. An FPGA-based solution is perfect for speeding
up our pitch detection algorithm and achieving realtime results.

Our input music is sampled at 22.05kHz and chunked into frames of 2048 samples. Each sample
is represented as a FixedPoint number with 16 integer bits and 24 fractional bits. Thus, the input
bit rate is 882000 bits per second and our target frame rate is 11 frames per second. For each
frame, our system outputs the frequencies of the detected notes, with a maximum of 4 notes
detected simultaneously. The pitch frequencies are represented as FixedPoints with 16 integer
bits and 16 fractional bits. Thus, the output bit rate is 1760 bits per second.
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frame rate =
(

22.05 Ksamples/s

2048 samples/frame

)
(1)

bit rate = (
22.05 Ksamples/s)(16+24 bits/sample

)
(2)

output bit rate = (11 frames/s)(5 pitch outputs/frame)(16+16 bits/output) (3)

Figure 1: Sheet music for monophonic tune Twinkle Twinkle Little Star produced by Lilypond
engraving editor. This output was the result of running the implementation of our
algorithm in Matlab on a .wav file of a piano playing the tune. Rhythmic differentiation
is not shown as the algorithm does not employ beat detection.

2 BACKGROUND

Musicians, especially composers and those who arrange music must develop the ability to listen
to music and write down or "transcribe" onto sheet music what they hear. However, this tech-
nique requires significant music theory knowledge and ear training, and becomes much more
complex when multiple instruments and chords are introduced. It is especially difficult for those
with no musical training to accomplish this task, which is becoming an increasingly desirable
task as amateur musicians wish to play their favorite songs without having to buy sheet music
that is often unavailable.

One might also want the ability to transcribe music in realtime for live-composition. In a test,
commercially available music transcription software takes about 30 seconds to process a song
of about 30 seconds and this cannot be done in real-time. With our Matlab implementation, it
takes about 2 seconds to process a song of 30 seconds and 3-4 seconds to process a minute long
file. For large audio files or small time-slice size for processing, this could become quite time
consuming.

We define pitch as the fundamental frequency of a periodic sound. Humans perceive sounds on a
logarithmic scale and recognize canonical frequencies in the Western music tradition. Research
is currently ongoing to develop algorithms for polyphonic pitch detection. This goal is hindered
by high computational loads, timbral effects, and inconsistent detection accuracy over large
frequency ranges.
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Many pitch detection algorithms use the Fourier Transform to analyze frequency components
of audio. Detecting pitch in sounds can be complicated by the effects of timbre, or spectral
composition of the sounds. To accomplish good timbre rejection, we use a technique called
"spectral whitening" which is described later in this paper.

Some of the most current literature has blended different pitch detection algorithms to take
advantage of their strengths and weaknesses. For example, researcher John Thomas combined
algorithms that used the Auto-Correlation Function (ACF) and the Fast Fourier Transform (FFT).
The resulting algorithm had the ACF’s good accuracy at lower frequencies and the FFT’s good
accuracy at higher frequencies.

A first step to creating such a combined algorithm is to start with a single-method algorithm.
From methods that used ACT, FFT, and non-negative matrix factorization (NMF), we chose the
FFT-based Klapuri algorithm because of its superior accuracy when detecting 1-4 pitches in
polyphonic music.

The Klapuri algorithm begins by processing each music input frame with Hanning windowing,
zero-padding, and spectral whitening. Then, it uses a metric called Salience to estimate the
strongest pitch in the frame. Salience is calculated as the sum of the FFT contributions from a
pitch and up to 20 of its harmonics. Using Salience, the algorithm performs a modified binary
search and returns the detected pitch. If polyphonic detection is desired, the Klapuri subtracts
this pitch from the spectrum and repeats the process until up to four pitches per time-slice are
detected.

3 BENEFITS OF FPGA

The Klapuri algorithm is a good candidate to be implemented on a FPGA because many of the
subcomponents of the algorithm can be done in parallel. For example, in the whitening module,
there are 30 different coefficients to be computed from a set of 2048 input data points; if this
computation was done serially, the total throughput would be 1/30 of the same computation
done in parallel. The ML605 has enough DSP slices to provide high speed parallel computations
needed for rapid input into the linear interpolation module.

On the FPGA, the streaming FFT module takes up the most real estate, and so having more than
one module is not practical. However, by duplicating the computation modules (e.g. Absolute
value) downstream from the FFT and staggering the FFT outputs, we can get a better throughput.
This double buffering technique can also be implemented in software, but on an FPGA is much
easier.
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Figure 2: System Block Diagram.
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4 HIGH-LEVEL DESIGN AND TEST PLAN

Our test bench was based on John Thomas’ reference code in his 2012 paper. We ran the Klapuri
algorithm in MATLAB, with .wav file inputs that we found on the Web (Twinkle Twinkle Little
Star and a Bach chorale). With this system, we verified that the algorithm can identify the mono-
phones in Twinkle and the polyphones in Bach Chorale.

Our Bluespec system starts when we feed a .pcm music file into the SceMi interface. The music’s
tempo and degree of polyphony are also provided via SceMi. The input music is chosen for its
constant beat length, as our project does not include beat detection.

The pitch detection hardware chunks the data, windows and pads the data frames, applies
whitening, generates the frame’s FFT, and finds the strongest frequencies. These pitch frequen-
cies, represented as FixedPoint numbers, are sent back to software.

Then, the software component matches the frequencies with actual pitches (i.e. 261.626Hz →
C4). These pitches are written into a text file, and a shell script handles sheet music generation:
the script sends the text file to LilyPond, which produces a sheet music PDF. The script reloads
GhostViewer so that the displayed PDF always shows the cumulative engraved music.

Lilypond is a music engraving program that takes a text file similar to that of LATEX and produces
a professional-looking pdf of sheet music. This program is terminal-based, free and very simple
to use with no GUI and seemed perfect for our application.

5 MICROARCHITECTURAL DESCRIPTION

The time domain slices of audio samples coming from the .PCM file are first passed through
the Hanning window function. The window function’s purpose is to attenuate the signal at the
edges of the slice and make sure the fourier transform of the signal does not extend to infinity
(similar to sync function). 2048 Hanning coefficients were generated in MATLAB and loaded
into a big look up table for multiplication with the incoming data points. The lookup table was
later replaced with BRAM to decrease LUT utilization. This module takes in the data samples as
signed integers and multiplies them with appropriate Hanning coefficients and output to the
FFT module.

w(n) = 0.5

(
1−cos

(
2πn

N −1

))
(4)

The cube root module was based partially on the square root module we were given. The goal was
to use an efficient algorithm that would not take up much hardware on the FPGA. The algorithm
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Figure 3: Hanning window stage microarchitecture.

Figure 4: Hanning window stage microarchitecture.
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Figure 5: 4096-pt streaming FFT implementation by Abhinav Agarwal of MIT CSAIL.
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Figure 6: Effects of half-wave rectification at the output of the absolute value module.

first considered was the iterative Newton-Raphson search method, however this algorithm is
quite computationally expensive because it involves picking "likely" numbers and cubing each
one until the original value is reached. The convergence of this algorithm is at least quadratic
which intuitively means that the number of correct digits roughly at least doubles in every step.

The cube root module that we implemented was based on an algorithm published in a 1981
paper detailing algorithms for square and cube roots. It uses clever bitwise operations to cut
down the amount of computation needed for this operation. This turns a potentially expensive
block into one of manageable size.

In order for the algorithm to effectively detect pitch with different sound sources, we need to iso-
late the fundamental frequency while attenuate the harmonics. The spectral whitening module
implements equation to suppress the timbre of the sound in the sample slice. The operation is
done in the frequency domain, after the sound has been zero padded and went through FFT and
absolute value.

The whitening module is made up of several interconnected components, and each component
performs an operation on the input and passes the result onto the next one. As the input leaves
the input FIFO to get squared by the squaring component, a copy of it is stored in a register
file. Once every value has gone through all the component stages, the whitening coefficient can
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Figure 7: Spectral whitening stage microarchitecture.

finally be calculated and multiplied to the original inputs in the register file. The interpolation
submodule receives 32 x,y pairs and outputs 2048 linearly interpolated x,y pairs. The y values are
the whitening coefficients.

Figure 8: Salience stage microarchitecture.

σb =
√

1

K

∑
k

Hb(k) | X (k) |2 (5)
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The Salience module requires the FFT output to be indexed and addressable, so we used RegFiles
to contain this data. In addition, the Salience calculation cannot be performed until a full win-
dow of FFT output has been received. (Footnote: We only use the first 2048 FFT outputs – this
approximates a positive FFT.) Two RegFiles were used so that at any given time, one can be used
for calculations and the other can be used to stream in the next window of data.

The module uses Registers of Bits to keep track of indices of interest. The Salience sorting algo-
rithm begins by "splitting" the Regfile into two blocks, by using the minimum, maximum, and
midpoint indices in its calculations. Each block represents its center frequency, whose associated
FFT value gets summed with up to 20 of its harmonics’ FFT values. This sum is the Salience. The
module choses the block with the largest Salience and repeats the algorithm: split, calculate
Salience for the newly split half-blocks, find the block with the global maximum Salience, and
iterate with that block.

When the block size becomes small enough, the detected pitch with the largest Salience gets
enqueued into the output FIFO. The user-specified number of polyphonic pitches determines
whether the Salience module starts anew with a new data frame or finds more pitches in the
current window.

To find additional pitches in a window, the module first updates the data RegFile to remove
the contributions from the detected pitch. Then, the module repeats its pitch detection on
the modified data. Detecting a single pitch takes roughly 50,000 cycles. At a clocking rate of
50MHz, this means that each pitch takes 1ms to detect. If we use 4-tone chords as our input,
each window takes 4ms to process through Salience. The 50,000 cycles number comes from
code that completely unfolded for-loops. We planned to change that after our timing analysis by
completing multiple for-loop iterations per rule instead of just one iteration per rule.

6 IMPLEMENTATION EVALUATION

We encountered some standard coding challenges when writing our system. For example, in
Salience, we replaced many Vectors with RegFiles and unfolded our for-loops. We also changed
our microarchitecture in Salience – instead of estimating whether to continue polyphony detec-
tion (using energy), we depend the user to input the number of pitches in the music.

Whitening was very difficult to understand and implement. It required interpolation and a lot
of Vector manipulation. Implementing Cube Root was also difficult because most resources
show cube root iterative estimation for decimal numbers, not binary representations. Sorter and
Salience are bottle-necks because each one requires a full window to be streamed in before it can
start outputting.
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Figure 9: A listing of number of lines of code for our implementation.

In moving from simulation to FPGA, we encountered some difficulties. First, the FFT mod-
ule requires enough hardware that we must use the Virtex 6. In addition, we got access to
zakota@csail.mit.edu, a server that had enough memory to synthesize our system. It is computa-
tionally equivalent to the purity system managed by Nirav.

We synthesized our system and found that our Slice LUT utilization was far too high as summa-
rized below.
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S l i c e Logic U t i l i z a t i o n :
Number of S l i c e Registers : 115688 out of 301440 38%
Number of S l i c e LUTs : 384498 out of 150720 255%

Number used as Logic : 167106 out of 150720 110%
Number used as Memory: 217392 out of 58400 372%
Number used as RAM: 209120
Number used as SRL : 8272

S l i c e Logic Distribution :
Number of LUT Flip Flop pairs used : 480837

Number with an unused Fl ip Flop : 365149 out of 480837 75%
Number with an unused LUT: 96339 out of 480837 20%
Number of f u l l y used LUT−FF pairs : 19349 out of 480837 4%
Number of unique control s e t s : 3259

IO U t i l i z a t i o n :
Number of IOs : 45
Number of bonded IOBs : 45 out of 600 7%

S p e c i f i c Feature U t i l i z a t i o n :
Number of Block RAM/FIFO : 22 out of 416 5%

Number using Block RAM only : 22
Number of BUFG/BUFGCTRLs: 15 out of 32 46%
Number of DSP48E1s : 611 out of 768 79%

To mitigate this problem, we began by transferring all of our Hanning and Whitening coefficients
to Block RAM. For example, we used BRAM_Configure and LoadFormat to configure a Hanning
BRAM with a Hanning text file.

Our timing report did not complete, as our Slice LUT problems prevented mapping from finish-
ing. If we had gotten timing results, we would have modified our critical paths and also improved
latency by using multiple for-loop iterations in our unfolded rules.

Part of the power of Bluespec lies in the ease of reusing IP blocks due to modularity and poly-
morphism. To this end, we made sure to reuse as much IP as possible. We were able to use an
existing implementation of a streaming 4096-pt FFT and a square root module. Though there
was a slight issue with overflow in the FFT module given our inputs and we were not quite able to
produce the correct output as a result, this FFT module fit perfectly into our streaming audio
implementation.
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7 DESIGN EXPLORATION

We had correctness issues in simulation: some test windows of music data gave correct results,
but when we started streaming data through the system, we found that was an error in either the
Hanning multiplication or the FFT output. Future work would explore these errors and correct
them.

We were not able to perform a timing analysis and optimize our code for timing. A future explo-
ration that would enable true music transcription would be combining our project with a beat
detection module, so we can engrave music with varying beat lengths and tempos.

We could also make our window size smaller so the system would work with extremely fast
tempos. There would be less latency with smaller windows, because some of our modules cannot
begin computation until they have whole windows streamed in.

Another improvement would be increasing the FFT resolution in response to smaller differences
between pitches as the frequency lowers. Finally, we could combine the Klapuri algorithm with an
autocorrelation function-based algorithm (like Toleinen) as some current researchers are doing.
Blending different algorithms can help with accuracy throughout low and high frequencies.
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