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1. Motivation 
Today's Database Management Systems (DBMS) are typically software running on a top of a standard 
operating system on a general purpose processor. Upon receiving a complex query statement (in SQL for 
example), the DBMS produces a query plan fundamentally based on relational algebra primitives, which 
is executed on the CPU. However, many such DBMS's are being used in the realm of scientific computing 
or analytics, where the data is read-intensive and queries are computationally heavy. For these types of 
workloads, the performance of a DBMS is often bottlenecked by processing power, software overhead, 
latency and power consumption.  

We propose a Field Programmable Gate Array (FPGA) based relational algebra processor to compute 
database queries. At the system level, such a dedicated processor may be inserted between physical 
storage (e.g. SSDs or HDDs) and the host machine to directly process the queries where the data is 
located with minimal software intervention (Figure 1). Dedicated relational algebra operators are 
programmed on the FPGA to accelerate complex queries, exploiting parallelism and high speeds of 
dedicated hardware, while saving power and reducing bandwidth between the physical storage and host.  

 

 

 

 

 

 

To narrow the scope of the project, we used on-board DRAM to emulate physical storage where the 
database tables reside (Figure 2). In addition, we did not run a full-fledged DBMS on the host system nor 
do we execute SQL queries. We considered only basic relational algebra operators, which forms a subset 
of the capabilities of SQL. Tables are read-only. 

 

 

 

 

 

Relational algebra has five primitive operators: selection, projection, Cartesian product, set union and set 
difference. Those operate on relational database tables where data records are often referred to as rows, 
and record attributes are called columns. 

1. Selection is a unary operation written as 𝜎𝜑(𝑅) where 𝜑 is a Boolean formula (>, =, < etc.) that 
consists of a set of conditions on the attributes of relational database table 𝑅. Selection outputs all 
those tuples in 𝑅 for which 𝜑 holds. 

2. Projection is a unary operation written as 𝜋𝑎1,…,𝑎𝑛(𝑅) where 𝑎1, … , 𝑎𝑛is a set of attribute names 
(columns) of the relational database table 𝑅. Projection outputs only those attributes of the table 
and also eliminates duplicated outputs.  
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Figure 1: RA processor with direct access to storage 

Figure 2: Proposed system with DRAM emulating storage 
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3. Cartesian product is a binary operation written as 𝑅 × 𝑆, where 𝑅 is a m-tuple table of 𝑎 rows and 
𝑆 is n-tuple table of 𝑏 rows. The result is a 𝑚 + 𝑛 tuple table of 𝑎 × 𝑏 rows.  

4. Set Union is a binary operation written as 𝑅1 ∪ 𝑅2, where 𝑅1 and 𝑅2 are the relational database 
tables of the same schema, (i.e. same columns). This results 𝑅 = {𝑡|𝑡 ∈ 𝑅1⋁𝑡 ∈ 𝑅2} 

5. Set Difference is a binary operation written as 𝑅1 − 𝑅2, where 𝑅1 and 𝑅2 are the relational 
database tables of the same schema, (i.e. same columns). This results 𝑅 = {𝑡|𝑡 ∈ 𝑅1⋁𝑡 ∉ 𝑅2} 

Altogether, the five primitive operators have the expressive power to derive many other relational algebra. 
For example, a JOIN in SQL 𝑅 ⋈𝜑 𝑆 could be expressed as 𝜎𝜑(𝑅 × 𝑆). 

2. Project Objective 
The goal of this project is to develop a stand-alone relational algebra processor on the FPGA and to 
explore the type of queries that are advantageous for offloading execution from the host to the FPGA. 
The system will accept as input a set of tables representing a database and a series of fundamental 
relational algebra operations. It will perform the operations on the FPGA and output a single table 
containing the results.  

Our secondary objective is to outperform a lightweight database management system, SQLite, in 
execution time on the same set of queries on the same tables running on a conventional computer. We 
hypothesize, however, that SQLite will remain the faster option in data I/O heavy queries due to high 
memory bandwidth on modern computers, whereas our FPGA RA processor will surpass SQLite in 
compute heavy queries.  

For simplicity and ease of implementation, some restrictions are imposed on the input data: 

• Table types are 32-bit integers/chars only 
• The size of all database tables do not exceed the size of DRAM 
• Max number of columns per table is 32 
• Max number of predicates of SELECT is 16 

3. High-level Design and Test Plan 
At the top level, the system is composed of software running on the host computer, which parses input 
tables and queries, streams them over PCIe to the FPGA which processes them. Result tables are then 
streamed back over PCIe to the host which finally displays the output table on the screen.  

3.1 Top Level Hardware and Software Architecture 
Figure 3 shows the high level hardware system architecture of the relational algebra processor on the 
FPGA. Overall, it consists of: 

• 6 RA Operators to perform basic relational algebra operations 
• Data I/O block to send data between the host and the FPGA via PCIe 
• RA Controller to coordinate the operation of the relational algebra commands 
• DRAM Controller to load/store data into DRAM 
• Row Marshaller to translate table specifications into raw DRAM address/data  

All of the RA Operators blocks are fully connected to each other as well as to the Row Marshaller. Data 
may be streamed in or out via any of the operator blocks and passed between blocks for sequential 
processing without storing intermediate values.  
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Figure 3: Top level hardware architecture diagram 

 

Upon starting the system, the software first streams the entire set of database tables into DRAM via 
SceMi/PCIe, and software fills a Command Buffer which specifies the series of relational algebra 
operations to be performed on these tables. The RA Controller coordinates the execution of these 
commands by enabling the necessary RA Operator blocks in sequence and intelligently directing the flow 
of data among the RA Operator blocks. The results are stored back into DRAM and then streamed out to 
the host PC via SceMi/PCIe. Note that it is not always possible to bypass storing intermediate values, and 
the RA Controller coordinates the blocks to use DRAM as scratch space.  

Query scheduling and metadata management for each table, such as their address in DRAM, size and 
properties, are managed in software for simplicity. The necessary metadata is passed to the hardware as 
part of the command so that hardware knows how to handle the tables. The overhead of doing this in 
software is small compared to the time it takes to actually process the tables because it is only done once 
at the start of a new query.  
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3.2 Test Plan 
Testing was done at the system level and the block level. At the system level, the RA processor was 
tested for correct functionality against a conventional DBMS, SQLite, by comparing the outputs of the RA 
processor with the outputs from SQLite given the same queries.  We initially populated the FPGA DRAM 
and SQLite with the same tables of various sizes and attributes. Then sets of relational algebra queries 
were executed: 

• single operator queries: basic test for each of the operators 
• complex operator queries: permutations of multiple operators one after the other, with data 

dependencies 

Note that SQLite only accepts SQL queries and not relational algebra operators, thus conversion is 
required. We used an open source RA interpreter [1], which accepts RA operators and directly issues the 
translated queries to SQLite.  

Separate test bench environments were created for the Row Marshaller and each RA operator module. A 
DDR2 model was used in all of the test benches. The Row Marshaller was tested by writing table data 
and then verifying that the same data can be read back from any of its access ports. The RA operator test 
benches composed of the operator module under test, the Row Marshaller and the DDR2 model. 
Commands are issued to the operator and we verify that upon receiving the acknowledgement from the 
operator that the expected output table resides in DRAM by reading it out via an access port of the Row 
Marshaller.  

4. Microarchitecture Description 
Refer to Figure 3 for the top level diagram of the system.  

4.1 Host Software 
Software running on the host machine is responsible for streaming table data to and from the FPGA 
DRAM, managing table metadata and packing/optimizing relational algebra commands to be sent to the 
FPGA. Refer to Figure 4 for the software block diagram. 

Database tables, stored as CSV files on the host, are tokenized by the software. A separate table 
metadata entry is created for each table and kept in a global structure on the host. Table contents are 
streamed over SceMi ports via PCIe to populate the FPGA DRAM. Another CSV file containing the 
relational algebra commands is also parsed, and the commands are packed into structs. The software 
then precomputes the metadata of the output table (assuming worst case sizes) such that any dependent 
commands will have the correct metadata. The commands are reordered and scheduled (algorithm is 
discussed later), and then passed to the FPGA for execution. Software waits until it receives an 
acknowledgement from the FPGA indicating that all operations are complete. Finally, it issues the request 
to fetch the output table from DRAM on the FPGA and display it on the screen.  
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Figure 4: Host software block diagram 

4.2 Row Marshaller & Mux 
The Row Marshaller performs address translation and manages data bursts to provide an easy interface 
for the RA operators to access tables in DRAM (Figure 5). Given the table specifications (number of rows 
and columns), it is capable of reading a specific row of a table or reading an entire table. Because the 
DDR controller provides 256-bit bursts of data, the marshaller has to aggregate, split or truncate DDR 
bursts such that we can read table rows that are unaligned to 256-bit boundaries. In DRAM, tables begin 
at addresses aligned to 256-bits. Rows are packed as tightly as possible contiguously. All tables end with 
an end of table marker.  

In addition, the Row Marshaller multiplexes requests and data from all the operator blocks onto a single 
memory controller. To reduce the size of the multiplexer, table data are sent out in 32-bit bursts to the 
operator blocks.  

The Row Marshaller is also capable of handling one read request and one write request simultaneously. It 
is imperative that write requests to DRAM are prioritized over read bursts to avoid deadlocks in the 
system. Rows that have been processed must be written out before new rows can be processed by an 
operator. Another potential deadlock scenario can arise if the memory controller request FIFO is flooded 
with read requests, but the data pathway cannot drain because the write request to the memory cannot 
be enqueued. To resolve this, we used a large output buffer, and only issue read requests to the memory 
if there is enough space in the buffer to hold the output of that read request.  
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Figure 5: Row marshaller architecture 

4.3 RA Controller 
The RA Controller block receives RA commands from the host via SceMi and buffers all the commands in 
a BRAM. The controller runs a simple FSM that forwards a command to the appropriate RA operator 
block, waits for an acknowledgement from that operator and issues the next command. Upon completing 
all the commands, the controller acknowledges the software via SceMi.  

The RA controller may send commands simultaneously to several RA operator modules such that the 
operators may stream rows among each other without storing intermediate tables to memory. The 
decision whether to do this will be made in software and encoded in the commands.  

Commands are packed as structs and encoded as enums in both software and Bluespec. Each command 
contains all the information needed by the operator including table metadata:  

struct CmdEntry { 
   CmdOp op; 
   uint32_t table0Addr; 
   uint32_t table0numRows; 
   uint32_t table0numCols; 
   uint32_t outputAddr; //Addr for output table 
   RABlock outputDest; //Store back to memory or pass to another RA operator 
   RABlock inputSrc; //Where to get the rows, from mem or another RA operator 
   //Select 
   uint32_t numClauses; 
   SelClause clauses[MAX_CLAUSES]; 
   ClauseCon con[MAX_CLAUSES-1]; //AND/OR connectors between clauses 
   //Project 
   uint32_t colProjectMask; 
   //Union/Diff/Xprod 
   uint32_t table1Addr; 
   uint32_t table1numRows; 
   uint32_t table1numCols; }; 
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4.4 RA Operators 
All RA Operators have similar interfaces:  

• a command/ack interface to the RA controller 
• an address/data interface to the Row Marshaller  
• data interfaces to the other RA operators 

Operations on the tables are typically done on a row by row basis. Rows are obtained from either the 
Row Marshaller (i.e. memory) or from other RA operator modules and buffered within the operator 
module. The operation is performed and the new sets of rows are sent back to the Row Marshaller or to 
other RA modules for further processing.  

4.4.1 Selection 

The Selection module filters rows of a table based on a set of predicates joined by AND or OR (Figure 6). 
Predicates are comparisons between an attribute and a value (e.g. age > 10) or two attribute (income > 
expense). We support up to 16 predicates in disjunctive normal form with a maximum of 4 AND’s and 4 
OR’s. Each predicate is evaluated by a comparator block, which outputs a qualify signal to indicate true or 
false. These qualify signals are mapped to the input of a binary tree of AND/OR gates. The output of the 
tree indicates whether the row should be discarded or kept.  

 

Figure 6: Select operator architecture 
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4.4.2 Projection 

The Projection module filters columns of a table encoded in a column name mask (Figure 7). The column 
name mask uses one-hot encoding, where each bit corresponds to a column name. If the corresponding 
bit for a column name is 1, the column data field will be put into the output buffer. Otherwise, it is 
discarded. Projection operates directly on the incoming 32-bit bursts (which conveniently corresponds to 
the data width of a column), and do not have to buffer the entire row.  

 

Figure 7: Project operator architecture 

 

4.4.3 Cartesian Product 

The Cartesian Product Module combines two input tables of unique set of table column names using 
nested loops. The module will stream in the rows of first table, and for each row from first table, it loops 
through second input table, and concatenate the rows. Concatenated rows are streamed either back to 
Row Marshaller or forward to other RA operators. 

4.5.4 Union 

The Union operator outputs the rows that are either in table 1 or table 2 (Figure 8). This is implemented 
by sequentially streaming in all rows of the first table followed by the second table. The Union operator 
requires that duplicates are removed, and this is achieved by comparing the rows of table 1 with table 2 
using a nested loop. 
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Figure 8: Binary operator architecture 

4.4.5 Difference 

The Difference operator selects rows that are in the first table but not in the second table (note that order 
matters). This is implemented using nested loops, where rows of the first table are searched for in the 
second table. If no match is found, the row is outputted.  

4.4.6 Deduplication 

Relational algebra semantics require duplicates to be removed after a Projection operation. However, 
duplication removal is an expensive operation on an unsorted dataset. Thus we decided to create a 
separate module for this purpose to give the flexibility of removing duplicates at any point in the series of 
commands (instead of always after Projection). The duplicate elimination block accepts an input table and 
generates an output table where each row is unique again using nested loops.  

4.5 Inter-operator Data Bypassing 
A key optimization of the system is the ability to pass rows of data between the operators without 
intermediate storage to memory. This drastically saves memory bandwidth and execution time. A 
relational algebra query can be thought of as a dependency/dataflow graph (directed), where each 
operator is a node and data stream is an edge. In our system, a node can have either one (unary 
operator) or two (binary operator) inputs, and any number of the same outputs. The dependency tree 
always ends with a single output table. We enabled a chain of operators concurrently if: 

1) The operators (except for the first one) forms a singly link of unary operators 
2) Each operator has a single target output 
3) No structural hazards of operators 

Figure 9 illustrate an optimized relational algebra query graph representation, where the blocks of same 
color are executed simultaneously. 
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Figure 9: Directed Graph representing a relational algebra query.  
The color filled operators are simultaneously enabled 

Finding operators to enable simultaneously is done in software by the command scheduler. The 
scheduler sequentially searches the commands to identify dependencies and reorders the command 
buffer such that operators that can be enabled together are next to each other in the buffer. The 
command struct encodes the source and destination of the data stream such that the operators know 
where to fetch and output the data. On the FPGA, the RA Controller looks at the command buffer, and 
keeps issuing commands until the destination of the command is memory. It then waits for an 
acknowledgment from all of the simultaneously enabled blocks before issuing the next set of commands.  

On the hardware side, each operator has multiple 32-bit wide input and output FIFOs each connected to 
a different destination or source. Depending on the data source and destination encoded in the 
command, the operators will get or put data from or into the corresponding FIFO. Figure 10 shows the 
exact connections at the top level.  

 

Figure 10: Inter-operator connections 
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5. Implementation Evaluation 

We implemented the RA processor in Bluespec compiled using Xilinx ISE 13.4 for the XUPV5 
development board. A breakdown of the resource utilization and number of lines of code in our design is 
presented below (Table 1, Table 2) . The system is compiled to operate at 50MHz, but can reach a max 
operating frequency of 55.79MHz according to the synthesis report. We used the existing PCIe and DDR 
memory controller modules provided in class or by the TA.  

Table 1: FPGA resource utilization 

Modules Slice Registers LUTs BRAM 

Total(RAProcessor + SceMi + DDR) 34,649 (50%) 59,328 (85%) 71 (47%) 

RowMashaller 2804 6627 0 

Controller 4570 6277 29 

Selection 3137 19633 0 

Projection 739  654 0 

Xprod 1935 1478 0 

Union 1939  1983 0 

Difference 1875  1949 0 

Dedup 1822 1970 0 

 

Table 2: Lines of BSV code (not including test benches or SceMi) 

Bluespec Modules Lines of Codes 

procTop.bsv 90 

RowMashaller.bsv 549 

Controller.bsv 321 

Selection.bsv 263 

Projection.bsv 191 

Xprod.bsv 279 

Union.bsv 357 

Differerence.bsv 260 

Dedup.bsv 282 

 

We did not encounter significant timing or area problems compiling for the FPGA. However, our design is 
using the majority of the LUTs on the FPGA. Most of the area is used by the Selection module and Row 
Marshaller. This primarily due to large muxes and predicate evaluation blocks. The critical path of the 
system is limited by the muxes in the Row Marshaller.  

We did encounter some random data corruption of DDR data when moving from simulation to the FPGA. 
Occasionally, DDR bursts would contain unexpected bits. The problem disappeared after recompiling, but 
the root of the problem is still unknown. We had thought the problem was caused by the ResetXactor in 
SceMi possibly initializing the controller to a bad state, but removing the ResetXactor, we still saw data 



13 
 
 

corruption in some compiles. We guess that the problem could be caused by DDR timing constraints not 
being set properly.  

5.1 Performance Test Setup 
Performance of the RA processor was compared against SQLite. Each RA operator was translated to its 
equivalent SQL query and executed in both hardware on the RA processor and in software using SQLite. 
Table 3 summarizes the queries that were tested.  

In hardware, the execution time was measured by using performance counters to record the number of 
cycles from the start of execution of the operator to the acknowledgement received from the operator. 
The cycle count divided by the frequency (50MHz) gives the execution time. Note that SceMi/PCIe is not 
considered in the benchmarks since it is a bottleneck created by Bluespec. 

In software, internal SQLite timers were enabled to report the execution time of each query. In an attempt 
to equalize with the hardware platform, the following steps were taken:  

- SQLite database was placed in RAMDisk since on the FPGA, the database resides in memory 
- SQLite outputs were suppressed by counting the output number of lines using “select count(*)”. 

This is because we are only concerned with computation time and not the overhead of stdout or 
its redirection.  

SQLite was running on a Thinkpad T430 configured with Core i7-3520M @ 2.90Ghz, 1x8GB DDR3-1600.  

Table 3: Queries tested 

Table 
Configuration Relational Algebra Query SQL Query 

1 table 
100,000 x 30 

SELECT,starLong,tableOut, 
 mass,>,80000, 
 AND,pos_x,>,10, 
 OR,pos_x,<,pos_z, 
 OR,col12,>,col14,  
 AND,col20,<,col21 

select count(*) from ( 
 select *  
 from starLong 
 where mass > 80000  
 and pos_x > 10 
 or pos_x < pos_z 
 or col12 > col14 
 and col20 < col21); 

1 table 
100,000 x 30 

PROJECT,starLong,tableOut, 
 pos_x,col19,col25,col29 

select count(*) from ( 
 select pos_x,col19, col25, col29 
 from starLong); 

2 tables 
1000 x 30 

UNION,starMed1,starMed2,starUnion select count(*) from ( 
 select * from starMed1 
 union 
 select * from starMed2) ; 
 

2 tables 
1000 x 30 

DIFFERENCE,starMed1,starMed2,starDiff select count(*) from ( 
 select * from starLong 
 except 
 select * from starLong); 

2 tables 
1000 x 30 

XPROD,starMed1,starMed2,starXprod select count(*) from ( 
 select * from starMed1, starMed2 
 ); 

1 table 
1000 x 30 

DEDUP,starMed1,starOut N/A 



14 
 
 

2 tables 
1000 x 30 

XPROD,starMed1,starMed2,starXprod 
RENAME,starXprod,0,iOrder0,1, 

mass0,8,phi0 
SELECT,starXprod,starFiltered, 

iOrder0,=,iOrder, 
 AND,phi0,>,1, 
 AND,mass0,>,mass 
PROJECT,starFiltered,starOut,mass0 

select count(*) from ( 
 select s1.mass 
 from starMed1 s1,starMed2 s2 
 where s1.vx > s2.vx  
  and s1.phi > 1  
  and s1.mass > s2.mass); 

 

5.2 Results 
Figure 11 summarizes the performance results. Overall, the FPGA RA processor performs on par with 
SQLite in Select (filtering) operations, but is an order of magnitude slower in all other operations. This is 
in line with our expectations. Select is computationally more intensive than all other operators, which 
benefits from the parallel and dedicated predicate evaluators on the FPGA. On the other hand, other 
operators are memory bandwidth bound, and our nested loop implementations of Union, Difference, 
XProduct and Deduplication exacerbate the problem. A major bottleneck of our architecture is the data 
burst width between blocks and the RowMarshaller, which is set at 32-bit wide. This means that at full 
speed, our design only streams data out of DRAM at 200MB/s (32 bits @ 50MHz) whereas the max 
transfer rate of DDR2-400 RAM on the XUPV5 is 3200MB/s [2], disregarding memory controller 
overheads. The 32-bit width was initially chosen because of resource limitations and timing concerns 
since there are many operators multiplexed onto the same DRAM controller and multiple FIFOs to stream 
data between the operators. However, presumably, we can increase the width of the bursts to 256-bits on 
a larger FPGA (as provided by the DRAM controller), which will increase the memory access bandwidth 
to 1600MB/s. This could potentially give us an order of magnitude improvement in performance for all the 
operators.  

In addition, the software is running on an x86 platform with a DDR3-1600 RAM module which has a peak 
transfer rate of 12.8GB/s [3]. Despite the OS memory management overheads, this is still a massive 
improvement over the DDR2-400 on the XUPV5. Caching and prefetching also add to the advantages.  

 

Figure 11: Query execution time comparisons 
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We evaluated the performance of Select in further detail since it seems to benefit from FPGA 
acceleration. We varied the number of predicates of the Select statement and measured the performance 
of each against SQLite (Figure 12). By design, the FPGA RA processor can support up to 16 predicates, 
and can evaluate all of these in parallel in one cycle. Thus we see that the execution time is relatively 
constant for up to 16 predicates. Note that the small bump at 4 predicates exists because there were 
fewer lines filtered out with that particular Select statement, and hence more memory write operations.  

SQLite execution time increases linearly with the number of predicates due to increased computational 
complexity for each row. Extrapolating this graph, we can conclude that for large and complex Selection 
predicates, FPGA acceleration will result in notable speedups.  

Finally, we verified that the inter-operator data bypass was giving us the expected speedup. The 
“complex join” query (Table 3, last row), was ran on the FPGA with bypass turned on and off. This query 
consists of a XProd followed by a Select and a Project, which can all be enabled at the same time for 
bypassing without intermediate storage to DRAM. We measured 3.414s with bypass disabled versus 
1.231s with bypass enabled. This is a ~3x speedup. Of course, this speedup factor is data and query 
dependent, but overall, bypass does improve performance.  

 

 

Figure 12: Select (Filter) execution time with varying number of predicates 
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6. Design Exploration 
We analyzed the cycles required for each operator to explore possible optimizations of the design (Table 
4). It is clear that most of the cycles are spent on streaming data to/from DRAM or other operator blocks. 
The binary operators must stream in/out two tables and may suffer additional latency penalties because 
their outer loop breaks sequentially access of DRAM.  

Table 4: Cycle analysis 

Operator Cycle Analysis 

Selection NUM_COLS cycles to buffer each row; 
1 cycles to evaluate each row based on predicates 
NUM_COLS cycles to write back the row if not filtered 

Projection 1 cycle to process each column of each row and write back if not filtered 

Union Outer loop: NUM_COLS_A cycles to buffer tableA’s row; 
 NUM_COLS_A cycles to write back tableA’s row 
 Inner loop: NUM_COLS_B cycles to buffer tableB’s row 
  1 cycle to compare row match (duplicate check) 
   NUM_COLS_B cycles to write back tableB’s row if no duplicates 

Difference Outer loop: NUM_COLS_A cycles to buffer tableA’s row; 
 Inner loop: NUM_COLS_B cycles to buffer tableB’s row 
  1 cycle to compare row match (duplicate check) 
  NUM_COLS_A cycles to write back tableA’s row if no duplicates 

XProduct Outer loop: NUM_COLS_A cycles to buffer tableA’s row; 
 Inner loop: NUM_COLS_B cycles to buffer tableB’s row 
  NUM_COLS_A + NUM_COLS_B cycles to write back concatenated rows 

Deduplication Outer loop: NUM_COLS_A cycles to buffer tableA’s row; 
 Inner loop: NUM_COLS_A cycles to buffer tableA’s row 
  1 cycle to compare row match (duplicate check) 
  NUM_COLS_A cycles to write back tableA’s row if no duplicates 

 

Exploration point: Increasing data burst width 

As mentioned in Section 5, using 32-bit data bursts is a key limitation of the system. Increasing the width 
of the bursts to up to 256-bit will reduce the number of cycles required to buffer a row and potentially 
result in orders of magnitude of improvement in performance. The tradeoffs are higher resource utilization 
and lower frequency, which could be alleviated by using a larger FPGA or pipelining.  

Exploration point: Maximizing memory bandwidth 

To always keep the memory busy, we could add additional row buffers to each operator such that while it 
is evaluating one row, it can simultaneously start buffering the next row. This can better hide the 
processing latency of each row and ensure that operator is constantly obtaining data from memory.  

Exploration point: Larger, faster DRAM; Higher clock speed 

Using DDR3 or faster DDR2 modules along with a higher clock speed (>50MHz), could alleviate the 
bandwidth limitations. Higher clock speeds can be attained by pipelining the multiplexers in the Row 
Marshaller to break up the critical path. As well, given larger DRAM modules we can run larger datasets 
to generate more accurate benchmark results.  
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7. Conclusion and Future Work 
We successfully implemented a standalone relational algebra processor on the FPGA. Based on our 
evaluation, we have found that data intensive operators are not beneficial for execution on the FPGA, but 
given sufficient bandwidth and complex queries, filtering operators can outperform conventional database 
software running on an x86 PC.  

A future opportunity for the project is to integrate such a processor in a hard drive or SSD controller to 
directly operate on the stored data. Furthermore, we can integrate the RA processor with SQLite as an 
accelerator. After generating a query plan, SQLite can decide based on the query complexity and type 
whether to offload the computation to process on the FPGA controller.  
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