
6.375 Group 2: Adaptive PIV Final Report

Robin Deits
rdeits@csail.mit.edu

May 15, 2013

Contents

1 Overview 2

2 Background: PIV 2

3 Adaptive PIV 2

4 Target Application 3

5 Implementation 3
5.1 Module: PIV . 4
5.2 Module: Window Tracker . 4

5.2.1 Module: Window Manager 4
5.2.2 Module: Accumulator . 4
5.2.3 Module: Displacement Tracker 5

6 Computational Requirements 5

7 Demonstration 6
7.1 Demonstrating Adaptive PIV . 6

8 Implementation Results 10
8.1 Performance on Hardware . 10
8.2 Implementation Challenges . 10
8.3 Device Utilization . 10
8.4 Bluespec Code and IP Reuse . 11

9 Future Explorations 11

10 Conclusion 11

1

1 Overview

This project is designed to implement Particle Image Velocimetry (PIV) on
hardware, using an FPGA. The purpose is to allow for real-time analysis of
fluid flows using optical tracking of thousands of particles. Specifically, this
project introduces a framework for PIV on hardware which allows for adaptive
selection of interrogation windows, which can improve the flow resolution in the
busiest parts of the fluid.

2 Background: PIV

Particle Image Velocimetry (PIV) is an optical approach to measuring the flow
field of a fluid, and has been used in the study of combustion, water flow,
robotics, and many other fields. It involves seeding a fluid with tracking particles
and using a laser or other planar lighting system to capture sequential images
of the particle positions in a single thin 2D slice of the fluid. By comparing
the change in position of groups of particles between the subsequent frames, a
measurement of the local flow vector can be computed for each region of the
fluid. This process of determining the movement of each section of the image
is extremely time-consuming in a sequential programming system, but can be
readily parallelized to significantly improve performance [3]

Each PIV computation is performed on a pair of sequential images. Com-
putation of the fluid flow begins by dividing the image up into small windows
of, for example, 64px on a side. A small window size helps ensure that all of
the particles within the window move with the same velocity between the two
frames. For each window, we extract the subimage corresponding to that win-
dow from the first image in the pair. We will call this subimage A. We then
extract a set of subimages B∆x,∆y by shifting the original window in two di-
mensions and extracting the corresponding subimages from the second image in
the pair. We can then perform a cross-correlation between A and each Bi,j and
determine the shift in x and y which maximizes the correlation. This gives the
most likely location of the particles from window A in the second frame, and
thus indicates the movement of that section of the fluid between the frames.

3 Adaptive PIV

Standard PIV algorithms involve an even spatial distribution of interrogation
windows A with a fixed window size and some fixed overlap, such as 64 px
windows beginning every 16 px. However, in order to achieve sufficient accuracy
in busy fluid flows, it can be necessary to choose very small windows or very high
degrees of overlap, which increases the computational demands by requiring far
more cross-correlation computations. Theunissen et al. proposed a method for
improving the performance of PIV in sub-optimial conditions, called Adaptive
PIV [1]. Their method uses information about the current density of seeding
particles and the prior estimate of the velocity field to update the size and spatial

2

frequency of the interrogation windows A. This has the effect of increasing
the number of data points in the busiest (highest particle density and highest
velocity) parts of the fluid and reducing the number of samples in the most stable
areas of the fluid, which can improve the amount of relevant data collected per
computational unit.

In this project, I will focus on implementing Adaptive PIV on an FPGA to
improve computational performance, with the ultimate goal of allowing accu-
rate real-time fluid tracking. I will be expanding on prior work implementing a
standard PIV algorithm on an FPGA [3]. I will also be using a recent Matlab
implementation of the Adaptive PIV algorithm by Samvaran Sharma of the
Robot Locomotion Group at MIT CSAIL as the reference code for my imple-
mentation.

The primary benefit of this project should be the parallelization and speedup
of the Adaptive PIV algorithm. In order to achieve the desired image size
and accuracy, Sharma’s current software requires approximately 2.5 seconds
per pair of frames, which makes real-time analysis of the fluid flow impossible.
In contrast, Yu et al. were able to compute 15 image pairs per second using
their FPGA implementation. My goal will be to achieve this result with the
added benefits of the adaptive algorithm’s focus on the most important areas
of the fluid flow.

4 Target Application

The target application of this system is to perform PIV tracking on camera data
in real time. This means processing 15 pairs of images per second (for a 30 Hz
overall framerate). I address the feasibility of this throughput in Section 6.

The ability to perform real-time PIV using a customized hardware system
would be of great value to a project such as the MIT RoboClam, with which I
have spent several years working. This project seeks to understand and replicate
the efficient burrowing mechanism of the Atlantic razor clam, Ensis directus, in
order to create self-digging anchors for energy-constrained underwater vehicles.
The razor clam uses the contraction of its shell to unpack the substrate around
it, making digging much easier [2]. We use PIV to analyze the motion of both
the real animal and its robotic counterpart and the effects that their motions
have on the surrounding substrate. Adding real-time PIV would enable rapid
feedback about the effects the robot is having on the substrate as we design and
improve its motion patterns.

5 Implementation

I have divided the implementation of the PIV system up into the high-level
logic, which is performed in Python, and the computationally intensive and
parallelizable cross-correlation which is performed on the FPGA. This division
is shown in Figure 1. The host machine reads image pairs from disk (simulat-

3

ing live capture from a camera system), then converts them to 4-bit grayscale.
These image pairs are transmitted over SCEMI to the FPGA, which stores both
images in Block RAM. The host machine then selects a series of interrogation
windows. The exact method of selection will depend on whether we are per-
forming normal or adaptive PIV. The host transmits the coordinates of the
interrogation windows to the DUT. The FPGA then extracts the actual image
data for each window, performs the cross-correlation, and locates the peak in
the cross-correlation value signifying the displacement of the particles in the
window. The FPGA then sends the displacement back to the host.

5.1 Module: PIV

The PIV master module handles all input and output operations to the SceMi
layer and manages access to the primary Block RAM. Image data is passed into
the PIV in packets of 8 pixels, in order to improve transmission performance
across SceMi. The PIV master breaks up the packets into individual pixels and
stores them in RAM. When the host sends a request for a particular interroga-
tion window, the PIV master chooses the next available Window Tracker and
downloads the sub-frames corresponding to the desired pixel coordinates of the
window to the Window Tracker’s own Block RAM. Once that tracker has fin-
ished computing the displacement of its window, the PIV master returns the
displacement data to the host.

5.2 Module: Window Tracker

The FPGA program contains many instances of the Window Tracker module,
each of which performs the cross-correlation and displacement extraction for a
single interrogation window. The Window Tracker has a number of submodules,
described below:

5.2.1 Module: Window Manager

The Window Manager is responsible for storing the entire sub-frame from each
of the source images for a particular interrogation window. Data is fed into the
Window Manager from the PIV master when a particular window is requested.
Once that download is complete the Window Manager begins to output each pair
of pixels which must be multiplied as part of the cross-correlation computation.

5.2.2 Module: Accumulator

The Accumulator takes pixel values from the Window Manager and computes
a running sum of the product of its pairs of inputs. It automatically resets its
internal total to zero for each element in the cross-correlation matrix output.
Since its operation is fully pipelined, it needs only a FIFO of pixel pairs from
the Window Manager and a FIFO of cross-correlation matrix elements to send
to the Displacement Tracker.

4

5.2.3 Module: Displacement Tracker

The Displacement Tracker determines from the output of the Accumulator the
current displacement values with the highest cross-correlation between the win-
dows. It reads cross-correlation elements from the output FIFO of the Ac-
cumulator and maintains internal variables for the highest result seen so far
and the x and y displacements corresponding to it. Once all cross-correlation
computations are finished, it makes its result available.

Window Tracker

Window Manager Accumulator Tracker
px1

px2
total

800px 60
0p

x

Adjust bit depth

Select windows

Post-process
& plot velocity data

Receive Images

Block RAM

Recieve window
coordinates

115 Mb/s

280 Kb/s

150 Kb/s

Python FPGA

SCEMI

Window Tracker

Window Manager Accumulator Tracker
px1

px2
total

Window Tracker

Window Manager Accumulator Tracker
px1

px2
total

Window Tracker

Window Manager Accumulator Tracker
px1

px2
total

Send Displacements

(u, v)

(u, v)

(u, v)

Figure 1: The system diagram for the Adaptive PIV implementation on the
FPGA. High-level logic relating to the particular PIV implementation is per-
formed in Python, and the cross-correlation is performed on the FPGA. Only 3
Window Tracker modules are shown, but the full implementation should have
up to 40 or more.

6 Computational Requirements

This section describes the computational goals of the PIV implementation. I
will discuss the actual performance of the system and how it relates to these
goals in Section 8.1. In order to assess the computational requirements of this

5

design, I chose to use the interrogation window parameters presented by Yu
et al. [3]. This choice means an interrogation window of 40x40px for the first
image in each pair and 32x32px for the second image in each pair. For clarity,
we will refer to the images as Image A and Image B and the frames as Frame
A (40x40) and Frame B (32x32). Cross-correlation will be performed for each
fully overlapping position of Frame B within Frame A. This means that the
cross-correlation matrix will have (40 − 32 + 1)2 = 81 elements.

Each element in the cross-correlation matrix will require 32 ∗ 32 multipli-
cations and additions, so the entire cross-correlation matrix will require 32 ∗
32 ∗ 81 = 82944 multiplications. To compute the full velocity vector field for
normal PIV, using an 8 pixel shift between interrogation windows, we must
compute 1680 cross-correlation matrices per image pair. This means that, for
a throughput of 15 image pairs per second, we need to perform 2, 090, 188, 800
multiplications per second. At a clock speed of 50 MHz, that comes down to
approximately 40 multiplications per clock cycle, meaning that the final design
will need 40 Window Tracker modules each performing a single multiplication
per cycle.

7 Demonstration

To test the PIV system, I generated several small image pairs with known
displacements. By applying an 80x60 px window to a source image, and then
shifting that window by a few pixels in a given direction, I created pairs of
images with perfectly uniform, controlled displacements, which the PIV system
was able to accurately track. One such pair is shown in Figure 2.

In addition, I have run the PIV system in simulation on an entire 800x600 px
image pair, using the test set from Sharma’s adaptive PIV system. The results
are shown in Figure 3.

7.1 Demonstrating Adaptive PIV

To demonstrate that this system is flexible enough to handle an adaptive PIV
wrapper, with no changes to the FPGA program, I created a simple Python
application to request windows with variable spatial frequency. Using velocity
data compiled from a previous run, I generated a probability density map based
on total velocity at each point in the image, then sampled 1000 window locations
from this distribution. The density and the resulting sampled points can be seen
in Figure 4.

6

Figure 2: A pair of sample images created to test the PIV system. The image
on the upper left has been shifted down and to the right by two pixels to create
the image on the upper right. The lower image shows the calculated flow field
from the PIV program, which matches this displacement.

7

Figure 3: A pair of full-size synthetic images taken from Sharma’s adaptive PIV
system, along with the measured flow field from the simulated FPGA implemen-
tation.

8

0 10 20 30 40 50 60 70

0

10

20

30

40

50

0

4

8

12

16

20

24

28

32

0 100 200 300 400 500 600

0

50

100

150

200

250

300

350

400

450

Figure 4: Sampling distribution created from prior fluid flow estimate (a) and
interrogation window locations drawn from that distribution (b). Note the high
probability density in the top-center of the image, where the vortex shown in
Figure 3 is located.

Figure 5: Results of adaptive PIV using the sampled interrogation window
locations shown in Figure 4. The area within the red box in (a) is shown in (b).

9

8 Implementation Results

I have successfully implemented the design described in this report to meet
most of the goals described. I have demonstrated PIV tracking in simulation on
images of 80x60, 640x480, and 800x600 pixels with up to 40 parallel Window
Trackers. I have also synthesized and run the design on hardware with image
sizes up to 640x480 pixels and 2 parallel trackers.

8.1 Performance on Hardware

The results of this project are promising but do not yet meet the full targets for
performance. I ran a series of benchmark tests to determine the effectiveness
of parallelizing the design to multiple Window Tracker modules. With a single
tracker module, the system completed 18,000 window requests in 30.8 seconds,
for an overall rate of 4.85 × 107 multiplications per second, or almost exactly 1
multiplication per clock cycle. With two parallel trackers, 18,000 requests took
only 15.7 s, for a rate of 9.49× 107 multiplications per second or 1.9 multiplica-
tions per clock cycle. This is extremely close to the target rate of 1 multiplication
per cycle per module.

Unfortunately, this performance does not yet scale properly beyond two
parallel trackers, and adding more modules does not significantly improve the
execution speed. This is likely due at least in part to contention for the single
main Block RAM, which must serve out the sub-frames to each tracker.

8.2 Implementation Challenges

There were a number of problems encountered in the design process, primarily
when attempting to use the design on the FPGA. When I restricted the size
of the images to 80x60 pixels, I was able to implement at least 40 parallel
tracking modules (although they did not necessarily improve execution speed,
as discussed previously). However, when I upgraded the system to 640x480 or
800x600 pixels, I began having a number of difficulties. With 800x600 pixels, I
was using 91% of available Block RAMs and synthesis reported success, but the
design would not run. Removing the reset transactor and ensuring that there
were no SceMi transactors passing void messages removed some of the hangups
experienced in execution but did not allow me to successfully run the system
with more than two trackers.

8.3 Device Utilization

Timing was not an issue with this design, as the timing analysis consistently
reported maximum frequencies of over 60 MHz. The primary constraint for
implementation was Block RAM usage. With an image size of 640x480, 60% of
RAMs were used, and with 800x600 images over 90% of available RAMs were
in use.

10

8.4 Bluespec Code and IP Reuse

The image memory module used to store each frame for PIV analysis was based
on the IMemory and DMemory used in the SMPIPS processor implementation.
The Ehr, Vector, and FIFO implementations were also used throughout the
design. All told, there were approximately 700 lines of Bluespec used in this
design, with a few hundred more lines of supporting C++ and Python code.

9 Future Explorations

I would like to extend the design to support varying the size of the interrogation
window. This is an important part of the Adaptive PIV algorithm, as it allows
the system to examine smaller windows of particle flow in busy areas of the
image, in which the assumption that all particles within a window are moving
with the same velocity might not hold for a larger window. This will require
adding a window size parameter to the reset() method of the Window Manager
and will require that that size parameter be passed to the Accumulator and
Tracker in order to adjust their behavior accordingly.

In addition, I would like to explore ways to overcome the parallelization
limits I encountered. The most likely next step in that exploration would be to
improve the efficiency of access to the primary image Block RAMs. One possible
method would be to store multiple pixels per word in RAM, which would allow
multiple pixels to be retrieved per cycle. Alternatively, I could duplicate the
Block RAMs to allow parallel access.

10 Conclusion

This paper presents a functioning implementation of Particle Image Velocimetry,
which is sufficiently flexible to perform standard PIV or a form of adaptive PIV
in which the spatial frequency of the interrogation windows is adjusted while
their size remains the same. It achieves a throughput rate of 1 multiplication
per cycle per tracker, which will be sufficient to allow real-time PIV imaging if
it can be extended to 40 parallel modules.

References

[1] Raf Theunissen, Fulvio Scarano, and Michel L Riethmuller. Spatially adap-
tive PIV interrogation based on data ensemble. Experiments in Fluids,
48(5):875–887, November 2009.

[2] Amos G. Winter, Robin L H Deits, and Anette E Hosoi. Localized flu-
idization burrowing mechanics of Ensis directus. Journal of Experimental
Biology, 215(12):2072–2080, 2012.

11

[3] Haiqian Yu, Miriam Leeser, Gilead Tadmor, and Stefan Siegel. Real-time
Particle Image Velocimetry for feedback loops using FPGA implementation.
Journal of Aerospace Computing, Information and Communication, 3(2):52–
62, 2006.

12

	Overview
	Background: PIV
	Adaptive PIV
	Target Application
	Implementation
	Module: PIV
	Module: Window Tracker
	Module: Window Manager
	Module: Accumulator
	Module: Displacement Tracker

	Computational Requirements
	Demonstration
	Demonstrating Adaptive PIV

	Implementation Results
	Performance on Hardware
	Implementation Challenges
	Device Utilization
	Bluespec Code and IP Reuse

	Future Explorations
	Conclusion

