OBJECTIVE

• Implement the RSA cryptology algorithm in Bluespec on the XUPV5 FPGA

• 1024-bit keys for higher security
• Meet 50 MHz timing and beat RaspberryPi performance
RSA ENCRYPTION AND DECRYPTION IN HARDWARE

• Benefits
 • Allow device manufacturers to skip inclusion of processors in devices that only require RSA
 • Improved performance, power usage, space

• Cool Application Example
 • Intelligence agencies' covert listening devices (bugs) with secure communication through RSA
ALGORITHM OVERVIEW

• Components:
 • Public Key (n, e)
 • Private Key (n, d)
 • Plaintext Message (m)
 • Ciphertext (c)

• Encryption
 \[c \equiv m^e \pmod{n} \]

• Decryption
 \[m \equiv c^d \pmod{n} \]
IMPLEMENTING

\[\text{data}^\text{exponent} \pmod{\text{modulus}} \]

- Modular Exponentiation
 - Right to Left binary algorithm
 - Computed using a Modulus Multiplication

- Interleaved Modulus Multiplication
 - Multiplication that interleaves the modulus that requires binary shifts, bitwise operations, and additions
MODULAR EXPONENTIATION

- Performs left-right binary exponentiation
- Uses two modular multipliers
- Takes 1024 steps to complete
INTERLEAVED MODULAR MULTIPLICATION

- Performs $A \times B \mod M$
- Scans through bits of A, if $A[i]$ is 1, then adds the value of B
 - Then corrects for modular overflow
- Optimized to prevent long comparison chain
ADDER DESIGN EXPLORATION

• Objective: to meet 50 MHz for a 1024-bit add

• Solution:
 • Naïve ripple-carry adder
 • Did not meet timing
 • Carry look-ahead adder
 • Clocked at 83.5 MHz
 • Multi-cycle adder
 • Lower performance than CLA
 • Reduced clock frequency adder
 • Did not meet space constraints
TIMING RESULTS

• Achieved 84.5 MHz for 1024-bit RSA (clocked at 50MHz)
 • Completes operation in ~200ms

• Raspberry Pi (700 MHz ARM11) completes an operation in one minute
 • Significant improvement over embedded processors
CONTRIBUTION

• Exceeds RaspberryPi performance using less power: **1.8 W** consumption
• RaspberryPi utilizes **2 W**
• Parametrizable adder architectures:
 • Carry look ahead, multicycle adder modules