HARDWARE RSA ACCELERATOR

Ariel Anders, Timur Balbekov, Neil Forrester 6.375 Spring 2013

OBJECTIVE

Implement the RSA cryptology algorithm in Bluespec on the XUPV5 FPGA

- 1024-bit keys for higher security
- Meet 50 MHz timing and beat RaspberryPi
 performance

RSA ENCRYPTION AND DECRYPTION IN HARDWARE

• Benefits

- Allow device manufacturers to skip inclusion of processors in devices that only require RSA
- Improved performance, power usage, space
- Cool Application Example
 - Intelligence agencies' covert listening devices (bugs) with secure communication through RSA

ALGORITHM OVERVIEW

- Components:
 - Public Key (n, e)
 - Private Key (n, d)
 - Plaintext Message (m)
 - Ciphertext (c)

• Encryption $c \equiv m^e \pmod{n}$

• Decryption $m \equiv c^d \pmod{n}$

data^{exponent} (mod modulus)

IMPLEMENTING data^{exponent} (mod modulus)

- Modular Exponentiation
 - Right to Left binary algorithm
 - Computed using a Modulus Multiplication
- Interleaved Modulus Multiplication
 - Multiplication that interleaves the modulus that requires binary shifts, bitwise operations, and additions

MODULAR EXPONENTIATION

- Performs left-right binary exponentiation
- Uses two modular multipliers
- Takes 1024 steps to complete

INTERLEAVED MODULAR MULTIPLICATION

- Performs
 A * B mod M
- Scans through bits of A, if A[i] is 1, then adds the value of B
 - Then corrects for modular overflow
- Optimized to prevent long comparison chain

ADDER DESIGN EXPLORATION

- Objective: to meet 50 MHz for a 1024-bit add
- Solution:
 - Naïve ripple-carry adder
 - Did not meet timing
 - Carry look-ahead adder
 - Clocked at 83.5 MHz
 - Multi-cycle adder
 - Lower performance than CLA
 - Reduced clock frequency adder
 - Did not meet space constraints

TIMING RESULTS

- Achieved 84.5 MHz for 1024-bit RSA (clocked at 50MHz)
 - Completes operation in ~200ms
- Raspberry Pi (700 MHz ARM11) completes an operation in one minute
 - Significant improvement over embedded processors

CONTRIBUTION

- Exceeds RaspberryPi performance using less power: **1.8 W** consumption
- RaspberryPi utilizes 2 W
- Parametrizable adder architectures:
 - Carry look ahead, multicycle adder modules