
Lab 1: A Simple Audio Pipeline

6.375 Laboratory 1
Assigned: February 8, 2013
Due: February 15 2013

1 Introduction

This lab is the beginning of a series of labs in which we will design the hardware for a Digital
Signal Processor (DSP) for audio signals and run it on an FPGA. Audio processing applications are
good candidates for hardware implementations since we are interested both in low power and high
throughput, especially if we are dealing with real-time applications or running on mobile platforms.

Figure 1 shows a high-level picture of the audio pipeline and the driving software infrastructure
we will use in a later lab when we run the audio pipeline on an FPGA for real. The software
component runs on the host processor and is responsible for opening the audio file, streaming its
contents across the serial communication channel to the hardware, retrieving the output of the
pipeline, and storing the results. This first lab will not use FPGAs, saving the challenges of using
FPGAs for later labs.

Convert to

PCM

Convert from

PCM

Audio

Hardware

Pipeline

FPGA (XUP v5)

Input

Host Machine (X86)

Output

Communication

Channel

Serial

Figure 1: High-level Audio Pipeline Diagram

Input

PCM

Output

PCM
Pitch
Modulation

IFFTFFTBand-Pass

Filter

Hardware Audio Pipeline

Figure 2: Audio Pipeline Made of Blocks

The box marked Hardware Audio Pipeline in figure 1 contains the digital signal processing
hardware which will be our focus in this and following labs. Hardware of this type usually consists
of a series of blocks, as depicted in figure 2. For example, it might begin with a band-pass filter to
remove unwanted frequencies. After that, there could be an FFT (Fast Fourier Transform) module
which converts the signal from the time domain to the frequency domain. Once in the frequency
domain the signal can be modified by any number of hardware functions such as pitch modulation.
The final blocks would include an IFFT (Inverse FFT) to convert it back to the time domain, and
possibly a windowing function.

We begin our audio processor with the hardware audio pipeline empty, essentially a loop-back
device. However, by the end of this lab, we will add a FIR (Finite Impulse Response) filter, serving
in place of the band pass filter, which can be used to attenuate specified frequency ranges. Over the
next few weeks, we will augment the pipeline further.

1

audio/

common/

AudioProcessorTypes.bsv

FilterCoefficients.bsv

Multiplier.bsv

TestDriver.bsv

data/

mitrib_short_filtered.pcm

mitrib_short.pcm

fir/

FIRFilter.bsv

fir.bspec

Figure 3: Lab1 code directory structure.

1.1 Lab Organization

The lab begins by describing how to use the Bluespec Workstation to compile and simulate your
design. Bluespec code for a trivial audio pipeline which passes through values unchanged is provided.

We then walk through an implementation of a simple 8 tap FIR filter written in Bluespec,
describing in detail what each part of the code is for. We will ask you some questions to guide your
exploration of some of the features of the Bluespec language.

Once you understand the FIR filter and have it running in simulation we provide an opportunity
to write your own Bluespec code by challenging you to implement the FIR filter using a multistage
multiplier, which will require a slightly different microarchitecture than the original FIR filter we
present.

2 Getting Started

All of the 6.375 laboratory assignments should be completed on an Athena/Linux workstation.
Please see the course website for more information on the computing resources available for 6.375
students. Once you have logged into an Athena/Linux workstation you will need to setup the 6.375
toolflow with the following commands.

$ add 6.375

$ source /mit/6.375/setup.sh

We will be using git to manage your 6.375 laboratory assignments. Every student has their own
bare repository on the course locker to use when submitting code. To work on your code start by
making a local clone of the bare repository using the following command.

$ git clone $GITROOT $USER

The repository includes code provided for this lab. After running the clone command you should
see this code in a newly created directory with the same name as your username.

While we will present you with all the git commands you need to submit your code when you
are done with the lab, git has many more valuable features you are welcome to take advantage of.
The internet is a good place to learn more about git.

3 Compiling and Simulating with the Bluespec Workbench

The directory layout for the code provided is shown in figure 3.

2

common/AudioProcessorTypes.bsv defines the Bluespec interface we will be using for our audio
pipeline throughout this series of labs. It defines an audio sample as a 16 bit signed integer, and
the AudioProcessor interface, which contains two methods. The putSampleInput method is
called with the next input sample data. The getSampleOutput method gets the sample data
provided by your audio pipeline which is some transformation of the input sample data.

common/TestDriver.bsv contains Bluespec code to drive the audio pipeline module in simulation.

fir/FIRFilter.bsv defines an initial implementation of an empty audio pipeline which simply
passes the input samples as is to the output without any transformation.

We can simulate the hardware described by the Bluespec code to get an idea of how it works
without having to deal with the complications of real hardware, which are many, even for such a
simple design as we are working with.

• Navigate to the fir/ directory and start up Bluespec Workstation.

audio$ cd fir

audio/fir$ bluespec fir.bspec&

• The Bluespec Workstation GUI will appear. Select Build->Compile This compiles the Blue-
spec source code.

• Select Build->Link. This creates the executable out which can be used to simulate the
hardware described by the top level module mkTestdriver. The executable file can then be
run like any program. The test driver code provided reads input audio file from a PCM (Pulse
Coded Modulation) file called in.pcm, passes it to your audio pipeline, and writes the output
from your pipeline to out.pcm. We have included a sample PCM audio file in the data/ folder
called mitrib short.pcm, along with the expected output PCM file for the filtered audio using
the filters we write later in the lab.

You can convert your own audio files to and from PCM format using ffmpeg. For example, to
convert an mp3 file to PCM:

ffmpeg -i foo.mp3 -f s16le -ac 1 foo.pcm

And to convert a pcm file to a wav file, which can be played by your favorite media player:

ffmpeg -f s16le -i foo.pcm foo.wav

• To simulate the audio pipeline on mitrib short.pcm, copy ../data/mitrib short.pcm to
in.pcm, then from the Build menu in the Workstation, select Simulate.

If everything worked correctly, you should have seen a long list of the samples processed in
hex, and the audio file out.pcm has been created with the output of your transformations.

• Verify whether your processor output the expected data. You can do this by comparing the
output out.pcm with the original file mitrib short.pcm provided, because the empty pipeline
should not be changing anything.

audio/fir$ cmp out.pcm ../data/mitrib_short.pcm

If the cmp command completes silently, the two PCM files match.

Alternatively, if both files have the same md5sum, they almost certainly have the same con-
tents.

audio/fir$ md5sum out.pcm ../data/mitrib_short.pcm

3

We can also direct the Bluespec Workstation to generate Verilog code, which can then be used by a
whole slew of tools to build the hardware as an ASIC or programed into an FPGA. Under the Project
menu select Options. In the window that popped up go to the Compile tab and select the compile to
Verilog option. If you compile the project now, it will create the file fir/bscdir/mkTestDriver.v.
Remember to change this back to bluesim when you go to simulate the design.

4 Writing FIR Filters in Bluespec

4.1 Background

A little background information on FIR filters is useful to justify the subsequent utility of this ex-
ercise. The following webpage gives a reasonable introduction to FIR digital filters:

http://www.netrino.com/Embedded-Systems/How-To/Digital-Filters-FIR-IIR

The basic idea is that by modifying the FIR filter’s constant coefficients, you can change the fre-
quencies which the filter will attenuate. By increasing the number of taps, i.e.,registers, you can
improve the quality of the FIR filter for a specific frequency response. You will create a band-pass
filter with eight taps using a predefined set of coefficients. We will use this filter in subsequent labs
to create more complex audio processing applications.

4.2 First FIR Filter

C0 C1 C2 C3 C4

R0 R1 R2 R3

*

+

* * * *

Figure 4: Simple Fir Filter

We will build up our FIR filter in steps. The first pipeline has a microarchitecture similar
to that shown in Figure 4, the only difference being the number of registers. Change the file
fir/FIRFilter.bsv to have the following lines.

import FIFO::*;

import FixedPoint::*;

import AudioProcessorTypes::*;

import FilterCoefficients::*;

These lines import definitions from other Bluespec files. FIFO and FixedPoint are provided as
part of the Bluespec library. AudioProcessorTypes and FilterCoefficients are defined in the common/
directory.

// The FIR Filter Module Definition

module mkFIRFilter (AudioProcessor);

4

http://www.netrino.com/Embedded-Systems/How-To/Digital-Filters-FIR-IIR

This begins a definition of a new module called mkFIRFilter. The module implements the
AudioProcessor interface defined in AudioProcessorTypes.bsv. The line beginning with two for-
ward slashes is a comment. The text in the comment is ignored by the compiler.

FIFO#(Sample) infifo <- mkFIFO();

FIFO#(Sample) outfifo <- mkFIFO();

These two lines instantiate two mkFIFO modules, which implement the FIFO interface. The type
of object we put on the fifos is Sample. We will place incoming samples in the infifo and outgoing
samples on the outfifo.

Reg#(Sample) r0 <- mkReg(0);

Reg#(Sample) r1 <- mkReg(0);

Reg#(Sample) r2 <- mkReg(0);

Reg#(Sample) r3 <- mkReg(0);

Reg#(Sample) r4 <- mkReg(0);

Reg#(Sample) r5 <- mkReg(0);

Reg#(Sample) r6 <- mkReg(0);

Reg#(Sample) r7 <- mkReg(0);

These lines instantiate the eight registers in our design. The mkReg module takes a single argu-
ment, which is the initial value for the register to contain.

We have now instantiated all the state elements in our design. Next we will write a rule to
describe how those state elements are updated.

rule process (True);

Sample sample = infifo.first();

infifo.deq();

r0 <= sample;

r1 <= r0;

r2 <= r1;

r3 <= r2;

r4 <= r3;

r5 <= r4;

r6 <= r5;

r7 <= r6;

FixedPoint#(16,16) accumulate =

c[0] * fromInt(sample)

+ c[1] * fromInt(r0)

+ c[2] * fromInt(r1)

+ c[3] * fromInt(r2)

+ c[4] * fromInt(r3)

+ c[5] * fromInt(r4)

+ c[6] * fromInt(r5)

+ c[7] * fromInt(r6)

+ c[8] * fromInt(r7);

outfifo.enq(fxptGetInt(accumulate));

endrule

This rule processes a sample. It will run whenever we have an incoming sample. The rule writes
the registers with their appropriate new values, calculates the output sample from the existing
register values, places the sample on the outgoing FIFO, and removes the input sample from the
input FIFO. All of these operations occur together, atomically, in a single cycle.

5

Now we have implemented all the rules of our design. All that remains is to implement the
AudioProcessor interface, which requires two methods.

method Action putSampleInput(Sample in);

infifo.enq(in);

endmethod

The first method takes a sample input, and places it on the infifo queue. It is an Action

method because it modifies internal state of the module infifo.

method ActionValue#(Sample) getSampleOutput();

outfifo.deq();

return outfifo.first();

endmethod

endmodule

Finally we implement the getSampleOutput method. This removes the first outgoing sample
from the outfifo and returns it. The method is marked ActionValue with type parameter Sample
to indicate it both modifies internal state and returns a value of type Sample.

The endmodule keyword completes the definition of our module. You should now be able to
compile and simulate the module. The output PCM of this filter and the remaining filters we
implement in this lab should match that in data/mitrib_short_filtered.pcm. Remember to
copy data/mitrib short.pcm to in.pcm in the fir directory before simulating. After simulating
verify the output is correct.

audio/fir% cmp out.pcm ../data/mitrib_short_filtered.pcm

4.3 Bluespec and Static Elaboration

If you typed in the above Bluespec lines by hand, you may have noticed it was annoying to have to
copy 8 lines to instantiate all 8 registers, then again in the processing of registers. If you did not
type in the above lines by hand, you anticipated the annoyance, which assuredly was there.

Fortunately, Bluespec provides constructs for powerful static elaboration which we can use to
make writing the code easier. Static elaboration refers to the process by which the Bluespec com-
piler evaluates expressions at compile time, using the results to generate the hardware rather than
generating hardware to evaluate the expressions dynamically.

Vectors in Bluespec are a nice way to describe sequences of things, whether they be values,
registers, or even rules. We can replace our 8 separate registers with a single vector of registers
instantiated with something like

Vector#(8, Reg#(Sample)) r <- replicateM(mkReg(0));

Now we can refer to the individual registers with bracket notation. For example r[0], r[1], and
so on to r[7].

We can use a for-loop to copy many lines of code which have the same form. For example, to
advance we could do something like

for (Integer i = 0; i < 7; i = i+1) begin

r[i+1] <= r[i];

end

The Bluespec compiler, during its static elaboration phase, will replace this for-loop with its fully
unrolled version.

r[1] <= r[0];

r[2] <= r[1];

r[3] <= r[2];

6

r[4] <= r[3];

r[5] <= r[4];

r[6] <= r[5];

r[7] <= r[6];

To see the effect static elaboration has on the hardware generated, we will compare the Verilog
code generated from the existing FIRFilter.bsv with a version using Vectors and loops. Generate
the Verilog code for the current FIRFilter.bsv now and save it to fir/FIRFilter unstatic.v.

Now modify FIRFilter.bsv to use a vector of registers and for-loops. You will need to import
the Vector package to use vectors. After you have verified your new version of the FIRFilter works
correctly, generate the Verilog code for it and compare that to fir/FIRFilter unstatic.v. How
has using for-loops in the Bluespec code changed the hardware the compiler generates for the FIR
filter?

4.4 Using a Multi-Stage Multiplier

So far we have been using the * operator for multiplication in our FIR Filter. This generates a com-
binational multiplier in hardware. Because multiplication is a complex operation, the combinational
multiplier potentially limits the frequency we can run our FIR filter at. We may be able to improve
the frequency by using a multistage multiplier, breaking the multiplication across multiple cycles.

In the common directory we provide you with an implementation of a multiplier which supports
the multistage interface a high performance multiplier may have. The interface for the multistage
multiplier is as follows.

interface Multiplier;

method Action putOperands(FixedPoint#(16, 16) coeff, Int#(16) samp);

method ActionValue#(FixedPoint#(16, 16)) getResult();

endinterface

To multiply two operands with the multiplier you first call the putOperands method with the
operands. Some number of cycles later (perhaps the implementers have not decided how many cycles
later is best yet), the result can be taken using the getResult method. The multiplier is pipelined,
so you can do multiple calls to putOperand before getting results. The results will come in the order
they were put in.

We can instantiate the multiplier in our mkFIRFilter module in the same way we instantiated
registers.

Multiplier multiplier <- mkMultiplier();

Here is how you can get the result of the multiplication:

let x <- multiplier.getResult();

The left arrow is needed in this case instead of a simple equals sign because the getResult

function of the multiplier is an ActionValue method, which can potentially change the state of the
multiplier. You should think of this use of the left arrow as different from that of the left arrow you
use when instantiating a module. The let keyword tells the compiler to figure out what type the
variable x should be on its own. In place of the let keyword you could instead explicitly put the
type of x, FixedPoint#(16, 16).

Change your FIR filter implementation to use 9 instances of the multistage multiplier instead of
the * operator. You will need to import the Multiplier package at the top of your bluespec code.
You might wish to use a vector to make it less tedious to instantiate 9 multipliers.

Because the multiplier takes multiple cycles to perform a multiplication, you can no longer
perform an entire iteration with a single atomic action. You will need to break apart the single rule
into multiple rules. One rule should initiate each of the 9 multiplication operations you need to
perform for a new sample by calling the putOperands method on each of the 9 multiplier instances.

7

A second rule should be used to collect the results of each multiplication and perform the sum of
those.

Figure 5 shows the new architecture, again limited to 4 taps here so it fits on the page; your
filter should remain an 8 tap filter.

C0 C1 C2 C3 C4

R0 R1 R2 R3

+

M0 M1 M2 M3 M4

Figure 5: Fir Filter with Special Multiplier

5 Discussion Questions

1. In section 4.3 we asked you to compare the hardware generated for the FIR filter before using
for-loops, and then again after. How does using for-loops in the Bluespec source code change
the hardware the compiler generates for the FIR filter?

2. How many lines of code would you have to change in the original filter description without
a for-loop and vectors if we wanted to turn it into a 16 tap FIR filter? How many lines of
code have to change in the version with the for-loop? A 256 tap FIR filter? Comment on
how for-loops can be used to write source code which is more generic and easily reusable in
different situations.

3. After switching your filter to use the multistage multiplier in place of the Verilog * operator,
the builders of the multiplier discover an enhancement they can make to their implementation
of the multiplier. How does your implementation of the filter have to change to accommodate
the new implementation of the multiplier assuming the multiplier interface stays the same?

5.1 What to Turn In

When you have completed the lab you should check in a final version via git. This should include
the Bluespec implementation of the FIR filter with multistage multiplier and your answers to the
discussion questions in a file called lab1 in a new directory called answers at the top level of the
lab directory. Text is the preferred format for the answers/lab1 file, pdf format is also acceptable.

To submit your final version you must first commit the new code to your local repository, then
push those changes back to the git repository in the course locker. For example, you could run:

audio$ git add answers/lab1

audio$ git add fir/FIRFilter.bsv

audio$ git commit -m "Lab1 submission"

audio$ git push

8

	Introduction
	Lab Organization

	Getting Started
	Compiling and Simulating with the Bluespec Workbench
	Writing FIR Filters in Bluespec
	Background
	First FIR Filter
	Bluespec and Static Elaboration
	Using a Multi-Stage Multiplier

	Discussion Questions
	What to Turn In

