Lab 2: Fast Fourier Transforms
Extending the Audio Pipeline

6.375 Laboratory 2
Assigned: February 15, 2013
Due: February 22, 2013

1 Introduction

In this lab you will build on the work you did in Lab 1, and augment your audio pipeline with an FFT
(Fast Fourier Transform) and an IFFT (Inverse FFT). The FFT transforms the audio signal from the
time domain to the frequency domain, and the IFFT transforms it in the opposite direction. While
you will not be asked to further modify the audio stream at this point, the FFT is an important
component of any signal processor and we will make full use of it in the next lab.

We provide code for a combinational FFT microarchitecture. You will be asked to pipeline the
microarchitecture using a linear pipeline and then a circular pipeline. You will then be asked to
make your pipelines polymorphic. Finally we ask you how you might test your FFT implementations
to verify they are correct.

1.1 Background: Fourier Transform

The .pcm files we use in this lab represent sound using PCM (Pulse-code Modulation). PCM is a
digital representation of an analog signal created by sampling the analog signal at regular intervals
(44 KHz, in our case), and storing those values as a series of signed integers. We refer to this format
as being in the “time domain”, since we are describing how the amplitude of the signal changes
over time. Waveforms can also be represented as a summation of sinusoids of different frequencies,
called a Fourier Series. We refer to this representation as being in the “frequency domain”, since
our encoding need only record the magnitude for each sinusoid frequency.

Often, the algorithms required to implement a particular audio manipulation on signals in the
time domain are very complex, while the corresponding algorithms implementing the same manip-
ulations in the frequency domain are far simpler. For example, consider distinguishing between
pitches in a song: In the time domain, a cross-correlation between the input signal and a set of
known pitch templates would be required. Computationally this is quite expensive; at the very least
a linear comparison with each template is required. When implemented in hardware, it might also
require a substantial amount of memory. If the waveform is converted into its frequency representa-
tion, a constant time comparison can be performed to detect a particular pitch. To decide in which
domain to perform the audio manipulation, we must consider not only the cost of the audio manip-
ulations, but also the cost of transforming between representations. For the audio manipulations
you will implement in Lab 3, transforming to the frequency domain is almost certainly appropriate.
Consequently, this lab focuses on designing an efficient means of converting signals to the frequency
domain.

The Discrete Fourier Transform converts the time domain representation into the frequency
domain. The DFT is best described as a basis transform. Recall from linear algebra that vectors in
space may be represented by a linear combination of a set of orthogonal bases. We convert a vector
to a different base by way of a matrix multiplication with a matrix of the new basis expressed in
terms of the old basis. In the case of the DFT we simply use sinusoids of different frequencies as the
basis matrix. This multiplication can be expressed by the well-known formula shown in Figure

The representation in Figure [1| is commonly presented in introductory signal processing texts.
It should be clear that the complexity of this formula and the corresponding matrix multiplication
is O(n?). This complexity can be reduced by noticing that many terms in the matrix may be
represented by various combinations of other terms in the same matrix. This observation leads to
the construction of the Fast Fourier Transform, an algorithm with a time complexity of O(nlog(n)).



N-1

Xp= Y ape ™% k=0,... ,N-1 (1)
n=0
Figure 1: Common DFT Form

Due to the commutativity of addition and multiplication, the terms of the matrix may be combined in
many ways, leading to several important variations on the FFT. In this lab we will explore the Pease
FFT, an algorithm which exhibits good parallelism while having a relatively simple construction.
To allow for finer granularity in choosing the number of points for the FFT, we use a “radix 2”
implementation instead of the “radix 4” implementation discussed in the lectures, but otherwise
the implementation is the same as what you have already seen.

The Pease transform shown in Figure [2| permutes the signal at each step in order to coalesce
values which need to be multiplied. In software, this permutation is not cheap, though in hardware,
the permutation is represented as a simple rewiring of the circuit, making it essentially free to
implement, except for the routing complexity of the wires.

input from chunker
to splitter

Figure 2: Dataflow of Pease transform (packets flow from left to right)

1.2 The New Pipeline

Lab 2 will build on Lab 1, so if you need to reference any material on the high-level Audio pipeline,
the Lab 1 handout is still valid. We have augmented the pipeline to include an FFT, and as such
are required to add a few additional modules to provide infrastructural support.

It is too expensive to compute the coefficients over the entire stream and not worth it since the
additional work only captures frequencies that are too low for us to care about. Instead, we can get
away with breaking the temporal stream into chunks of short-term sequences, or “audio frames”,
and perform an FFT on each of the frames individually. Once back in the time domain, we can
reassemble these frames into a serial stream. Some of the infrastructure we have added in this lab
is to support this chunking of audio samples into frames and splitting of frames back into individual
audio samples.

The logical structure of our new pipeline is shown in Figure [3] The FIR filter you constructed



in Lab 1 operates on a serialized stream, after which it passes into the Chunker where the audio
frames are assembled. The FFT then transforms each frame separately into the frequency domain
as discussed in Section [L.I} In this lab, we will transform the stream immediately back into the time
domain, and serialize the frames. There are many interesting transformations which can occur in
the frequency domain, some of which we will implement in Lab 3.

FIR |-—— pcm input

5 ™ 1 B

L | _» > 2

= E

El = FFT e IFFT . =

O ™ > ] @
pcm output

Figure 3: Lab 2 Logical Pipeline

Bluespec code for the pipeline in Figure [3]| is available from the Lab 2 harness on the course
website.

Update your local repository with the additional Bluespec code needed for Lab 2. Just as we did
for Lab 1, you will need to add the 6.375 course locker and source the setup.sh script. Navigate to
the directory which contains the audio/ folder from Lab 1, download the lab2-harness.tar.gz from
the course website, and run:

$ tar xf lab2-harness.tar.gz

This will add some new files to the audio/common/ directory, update some of the existing files
there, and create a new directory called audio/fft/ containing the combinational FFT implemen-
tation. To save the changes to your local repository, run

$ git add audio/common/*.bsv audio/fft
$ git commit -m "lab2 initial checkin"

Take a moment to familiarize yourself with the general organization of the code handed out. The
top level audio pipeline is implemented in a module called mkAudioPipeline in the file common/AudioPipeline.bsv.
The new packages, Chunker and Splitter, make use of the Server, Get, and Put interfaces from the
Bluespec library, which are essentially the same as the AudioProcessor interface we used for the
FIRFilter in the previous lab. The new modules also are polymorphic, something which you will be
familiar with by the end of this lab.

2 The Original FFT

Now that you have an overview of what this lab’s audio pipeline looks like, we can concentrate on the
module which you will be modifying, namely the FFT. Once again, we have provided you with the
complete code which you will need to understand and then modify. The microarchitecture of the FFT
we will begin with is shown in Figure [2| and is implemented by the module mkCombinationalFFT
in file ££t/FFT.bsv. Read and understand the FFT code.



We have provided a Bluespec Workstation project file, fft/fft.bspec, which is set up to run
the full pipeline using the FFT code provided.

Problem 1: Compile, link, and simulate the pipeline using the fft/fft.bspec project.

1. cd to ££t/ and open up fft.bspec using bluespec.
2. Select Build->Compile to build the project.

Select Build->Link to link the project.

- W

Copy the new sample PCM file data/mitrib.pcm to fft/in.pcm.
5. Select Build->Simulate in the Bluespec Workstation.

6. Verify the pipeline output the expected out.pcm by comparing that to data/mitrib_f£t8.pcm.

3 Modifying the FFT

One major problem with the original FFT microarchitecture is the length of its critical path. In
order to increase the throughput of this design, we need to shorten these wires so we can run it at
higher frequencies. In this section of the lab, we will look at two different ways of optimizing the
design.

The first microarchitectural modification, shown in Figure [d] will shorten the critical path sub-
stantially through the use of pipeline registers.

rom chunker

to splitter

input fi

Figure 4: Linear Pipelined FFT

Problem 2: Create a new FFT module called mkLinearFFT which implements the microarchi-
tecture shown in Figure ] To have the audio pipeline use this new FFT implementation, change
the implementation of the mkFFT module to instantiate the mkLinearFFT module instead of the
mkCombinationalFFT module. Simulate the new model and verify the output is correct.

mkLinearFFT has a far greater throughput than the original microarchitecture, but the pipeline
registers we added are quite expensive in terms of area. Figure |5 shows an alternative which will
run at similar frequencies, but require far less area due to the reduced number of registers.



& Em
Ly T v
=0 O+ Fo—=H |+
- —O- -
g >0 O & -
S - O ¢ -3
g O & L
:
- —O -
=0 O- o -
: :

8

Figure 5: Circular Pipelined FFT

Problem 3: Create a new FFT module called mkCircularFFT which implements the microarchi-
tecture shown in Figure [5| Update the mkFFT module to use the circular pipelined FFT, simulate
the new model and verify the output is correct.

After you have this working, you can make a commit to your local repository to save the code
so you can go back to it later in case you break something.

audio$ git add fft/FFT.bsv
audio$ git commit -m "Working FFT pipelines"

4 Making the FFT Pipelines Polymorphic

Bluespec’s powerful static elaboration lets us generate a wide variety of different hardware imple-
mentations from the same source code at no cost. Modules which can be instantiated into many
different hardware structures are called polymorphic. There are many ways in which a module can
be polymorphic.

4.1 Module Parameters

Modules can take as input static parameters. For example, consider your FIR filter from Lab 1. The
behavior of the FIR filter, and hence the hardware generated for it, depends on the values of the
filter coefficients. The source code needed to describe the FIR filter, however, does not depend on
the values of the filter coefficients. We can make the FIR filter work with any set of coefficients by
passing the coefficients vector as a parameter to the module, rather than referencing a global vector
of coefficients.

Module parameters are listed before the interface to the module. To pass the vector of coefficients
to the FIR filter, the module definition would begin

mkFIRFilter (Vector#(9, FixedPoint#(16, 16)) coeffs, AudioProcessor ifc);



The vector coeffs can now be referenced anywhere in the module. Note, when we add module
parameters this way, we have to give an explicit name for the interface, in this case ifc. The name
will not be used anywhere, but is needed by the compiler for whatever reason.

We pass the vector of coefficients we want to use when we instantiate the module. For example,

AudioProcessor fir <- mkFIRFilter(c);

Problem 4: Change your FIR filter to take the coefficients as a module parameter. If you have
done it correctly, AudioPipeline.bsv should import the FilterCoefficients and FIRFilter.bsv
should not.

4.2 Type-Polymorphic Module Parameters

Your FIR filter can now be used to instantiate any 8 tap FIR filter, but as we saw in Lab 1, very
little code needs to change if we want our FIR filter to be 16 taps, or 256 taps. By making the
coefficients parameter to the module polymorphic in the length of the vector, we can use our FIR
filter module to generate hardware for fir filters with different numbers of taps.

mkFIRFilter (Vector#(tnpl, FixedPoint#(16, 16)) coeffs, AudioProcessor ifc);

This says our FIR filter takes as input a vector of coefficients of length tnpi. That tnpl is a
numeric type variable which will be bound to the actual length of the coefficients vector supplied
when the FIR filter is instantiated. Note, tnpl is one more than the number of taps in the FIR
filter, because we have one more coefficient than the number of taps in the FIR filter.

Working with numeric types in Bluespec can be a little confusing. A numeric type is a type in
Bluespec, not an Integer. This means we can not use a numeric type where an Integer is expected
without an explicit conversion. The valueof function will make that conversion for us.

For example, if we have a for loop iterating over an Integer value, we will need the valueof
function to compare that Integer to the numeric type.

for (Integer i = 0; i < valueof(n); i = i+1)

There is no way to convert an Integer to a numeric type. A consequence of this is we need
special functions to do things like addition and subtraction of numeric types. The function TSub
can be used to perform subtraction of two numeric types. For example,

Integer numtaps = valueof (TSub#(tnpl, 1));

Other useful operations on numeric types are TAdd, TDiv, and TLog.

Problem 5: Change your FIR filter to take a variable length vector of coefficients as a module
parameter. What do you have to do now to instantiate a 4 tap FIR filter? A 256 tap FIR filter?
Will your FIR filter behave correctly in those cases?

4.3 Polymorphic Interfaces

Another way we can make modules polymorphic is by making their interfaces polymorphic. Consider
now, for example, the FFT interface.

typedef Server#(
Vector#(FFT_POINTS, ComplexSample),
Vector#(FFT_POINTS, ComplexSample)
) FFT;

It is another name for the Server interface from the Bluespec library with a specific number of
points. We can make the number of points in the FFT interface a parameter so that FFTs with
different numbers of points can reuse the same interface definition. To do this we would change the
FFT interface to



typedef Server#(
Vector#(fft_points, ComplexSample),
Vector#(fft_points, ComplexSample)
) FFT#(numeric type fft_points);

The number of points is now a parameter to the FFT interface. When we define our FFT module,
we specify the number of points it implements.

module mkCombinationalFFT (FFT#(FFT_POINTS));

To instantiate the module:
FFT#(FFT_POINTS) fft <- mkCombinationalFFT();

But, of course, we don’t want our FFT modules to only work for a single number of points. We
can make our module polymorphic, just like we made the FIR filter polymorphic in the number of
taps.

module mkCombinationalFFT (FFT#(fft_points));

The numeric type variable £ft_points is the number of points our FFT module should be instan-
tiated with.

Functions can also be made polymorphic by using type variables. For example, the signature of
the bitReverse function can be changed to

function Vector#(fft_points, ComplexSample)
bitReverse(Vector#(fft_points, ComplexSample) inVector);

Where the lowercase £ft_points is a numeric type variable which will be set to the appropriate
number of points based on how the function is called.

Problem 6: Change all of the FFT implementations, and the IFFT implementation to be poly-
morphic in the number of points. You can assume the number of points will be a power of 2. Note,
this requires many more changes than the FIR filter module required.

At some point in your changes, the Bluespec compiler will complain to you about provisos. The
stage_ft function, it complains, needs an additional proviso Add#(2, a__, fft_points). What is
that all about?

The way the stage_ft function is implemented we must impose additional restrictions on the
type parameters that are allowed. Specifically, we use the takeAt function to extract two elements
from the stage_in vector. This only makes sense if the stage_in vector has two elements. We use
provisos to specify explicitly these sorts of assumption our code depends on. The function signature
should be changed to something like

function Vector#(fft_points, ComplexSample)
stage_ft(
TwiddleTable#(fft_points) twiddles,
Bit#(TLog#(TLog#(fft_points))) stage,
Vector#(fft_points, ComplexSample) stage_in)
provisos (Add#(2, a fft_points));

—_—

The provisos keyword introduces a list of the assumptions our implementation makes. The
proviso Add#(2, a__, fft_points) says the numeric type 2 plus some other numeric type, call
it a__, must add up to fft_points. Because numeric types can’t be less than zero, this means
fft_points must not be less than 2.

Provisos can be applied to modules in the same way they are applied to functions. For example,

module mkCombinationalFFT (FFT#(fft_points))
provisos (Add#(2, a fft_points));

——>



You should now have enough information to finish Problem 6.

There are many different kinds of provisos you can specify. Fortunately, the compiler is very
good at informing you of what provisos it expects your functions and modules to have. Often you
can copy its suggestions directly to your code, but do take the effort to understand why the proviso
is needed. Are you making more assumptions in your code than you expect?

To get more practice with provisos, and make the FFT modules useful in even more cases, add
another type parameter to the FFT interface which is the type of Complex number it can work on.

typedef Server#(
Vector#(fft_points, Complex#(cmplxd)),
Vector#(fft_points, Complex#(cmplxd))
) FFT#(numeric type points, type cmplxd);

This will expose us to some different kinds of provisos.
Arith#(t) Asserts the given type t has +, * and other arithmetic operations defined for it.

Bits#(t, t_sz) Asserts the type t can be converted to a bit representation using the pack and
unpack functions. The number of bits needed is t_sz.

Bitwise#(t) Asserts the type t has bitwise operations, such as bit shifting defined for it.
RealLiteral#(t) Asserts you can convert the Real type to the given type t.

Each of these provisos asserts the type t belongs to the named typeclass. You can consult the
Bluespec reference guide for more information on typeclasses.

Problem 7: Update all the FFT modules to work for any kind of complex data. Many of the
functions and modules will require additional provisos.

After you have made this change, the FFT code is no longer dependent on the AudioProcessor
types. It can be reused in other projects as is. To verify your changes are complete, remove the
import of AudioProcessorTypes from FFT.bsv, run the pipelines, and verify they still compile and
work as expected.

Now that you are familiar with polymorphic modules, revisit the Chunker and Splitter modules
in the common/ directory. Do they make any more sense to you now?

5 Discussion Questions

1. Before you made your FFT implementations polymorphic, the number of points and data
type was specified with global typedefs. What are the advantages of making the interface and
modules polymorphic instead of just using typedefs? Are there any disadvantages to making
the interfaces and modules polymorphic?

2. Now that your FFT can be fully separated from the AudioPipeline, it makes sense to test the
FFT modules independently. Describe in detail (two or three paragraphs is appropriate) how
you can test your FFT implementations independently from the rest of the AudioPipeline.
Are your FFT implementations correct for both larger and smaller number of points than 87
Is it any easier to test the FFT implementations because they are polymorphic?

6 What to Turn In

When you have completed the lab you should check in a final version via git. This should include the
Bluespec implementation of the polymorphic combinational, linear, and circular FFT pipelines, the
polymorphic FIR filter, and answers to the discussion questions in a file called 1ab2 in the answers
directory.



To submit your final version first commit the new code to your local repository, then push those
changes back to the git repository in the course locker. For example, you could run:

audio$ git add -u .

audio$ git add answers/lab2

audio$ git commit -m "Lab 2 submission"
audio$ git push



	Introduction
	Background: Fourier Transform
	The New Pipeline

	The Original FFT
	Modifying the FFT
	Making the FFT Pipelines Polymorphic
	Module Parameters
	Type-Polymorphic Module Parameters
	Polymorphic Interfaces

	Discussion Questions
	What to Turn In

