
Lab 5: Pipelining an SMIPSv2 Processor: Part I

6.375 Laboratory 5
Assigned: March 8, 2013
Due: March 15, 2013

1 Introduction

In this laboratory assignment and the next you will be provided with an unpipelined two stage
SMIPSv2 processor in Bluespec which you must pipeline to achieve good performance. Obtaining
good performance requires a solid understanding of how Bluespec schedules rules, something you
should be an expert at by the time you complete these labs. For this first lab your task is to change
the magic memory provided with a more realistic multicycle memory and decouple the fetch stage
from the rest of the pipeline, handling control hazards appropriately. The next lab will complete
the pipelining of the processor to achieving adequate performance.

This lab handout describes the processor infrastructure, including how to build and run the processor
to determine if it functions correctly and how well it performs, advice on how to debug the processor,
the initial unpipelined processor design, and steps you should take to pipeline the unpipelined
processor.

2 The Processor Infrastructure

A large amount of work has already been done for you in setting up the infrastructure to run, test,
evaluate performance, and debug your SMIPSv2 processor in simulation and on the FPGA. This
section describes that infrastructure.

Appendix A includes a reference on the SMIPSv2 instruction set your processor supports.

2.1 Getting Started

Update your local repository with the code from the lab 5 harness. Add the 6.375 course locker,
source the setup script, navigate to the directory which contains the audio/ folder from previous
labs, download lab5-harness.tar.gz from the course website, and run

$ tar xf lab5-harness.tar.gz

This will create a directory called smips with the code for this lab and the next. To save your
changes to your local repository, run

$ git add smips

$ git commit -m "lab5 initial checkin"



PC

doFetch doExecute

RFileState

IMemory DMemory

IR

Cop
hostToCpu
cpuToHost

iMemInit

dMemInit

Figure 1: Original Microarchitecture

2.2 The Source Code

Figure 1 shows the processor core described by the source code in the src/ directory. The processor
uses magic memory for instruction and data memory. The processor communicates to the host
through a coprocessor which tracks cycle and instruction counts, among other things.

The source code implementing the processor and all of its components is split into files in the src/

directory as follows.

AddrPred.bsv Implementation of a simple next-pc address predictor.

Cop.bsv Implementation of the coprocessor module.

DMemory.bsv Implementation of the data memory. You will be asked to update this file in this lab.

Decode.bsv Implementation of the instruction decoding.

Ehr.bsv Implementation of Ehrs as described in the lectures.

Exec.bsv Implementation of the instruction execution.

Fifo.bsv Implementation of a variety of Fifos using Ehrs as described in the lectures.

IMemory.bsv Implementation of the instruction memory. You will be asked to update this file in
this lab.

MemInit.bsv Modules for downloading the initial contents of instruction and data memories from
the host pc.

MemTypes.bsv Common types relating to memory.

Proc.bsv The actual processor. The processor provided is a two stage unpipelined processor shown
in figure 1. This is where much of your modifications should be made for this lab.

ProcTypes.bsv Common types relating to the processor.

RFile.bsv Implementation of the register file.

2



SceMiLayer
Host

TestBench

Core

hostToCpu

dMemInit

Bridge

cpuToHost

HardwareSoftware

iMemInit

Figure 2: SceMi Setup

Scoreboard.bsv Implementation of a scoreboard for handling data hazards.

Types.bsv Common types.

2.3 The SceMi Setup

Figure 2 shows the SceMi setup for the lab. The SceMiLayer instantiates the core shown in figure
1 and SceMi ports for the core’s hostToCpu, cpuToHost, iMemInit, and dMemInit interfaces. The
SceMiLayer also provides a SceMi port for reseting the core from the test bench, allowing multiple
programs to be run on the Processor without reprogramming the FPGA.

Source code for the SceMiLayer and Bridge are in the scemi/ directory. The SceMi link goes over
a TCP bridge for simulation and a PCIe bridge when running on the actual FPGA.

2.4 Building the Project

The file scemi/sim/project.bld describes how to build the project using the build command
which is part of the Bluespec installation. Run build --doc for more information on the build

command. The full project, including hardware and testbench, can be rebuilt from scratch by
running the command build -v from the scemi/sim/ directory.

The file scemi/sim/sim.bspec is a Bluespec Workstation project file that can be used to build the
project from within the Bluespec Workstation rather than building from the command line. To
build the project in the Workstation, run from the scemi/sim/ directory:

bluespec sim.bspec&

This opens up the Workstation. From there you can compile and link to generate the two executables
bsim dut and tb. The executable bsim dut simulates the hardware; tb is the test bench.

3



The fpga/ directory contains its own project.bld and fpga.bspec for building the project for the
FPGA. Building for the FPGA includes running synthesis, map, and place-and-route, and takes on
the order of an hour to complete. When the build has completed, the FPGA can be programmed
using the programfpga command on the FPGA servers. Building for FPGA also creates a tb

executable for the test bench. Note: you will not be able to successfully synthesize for the FPGA
until after completing problem 1 of this lab.

In order to use the xilinx tools, the xilinx settings must be sourced. The course locker includes a
script called xilinx which runs a command with the xilinx settings sourced. For example, to build
for the FPGA:

fpga$ xilinx build -v xupv5_dut

(... wait a long time ...)

fpga$ build -v tb

2.5 Compiling the Assembly Tests and Benchmarks

Our SceMi test bench runs SMIPSv2 programs specified in Verilog Memory Hex (vmh) format.
The programs/ directory contains the source code for a number of assembly tests and benchmark
programs you can try out on your processor. A Makefile is provided for compiling the programs to
the required .vmh format.

To compile all the assembly tests and benchmarks, go to the programs/ directory and run the
command:

programs$ make

This will create a new directory under the programs/ directory called build/, which contains
the generated .vmh files along with other intermediate results. Compile the assembly tests and
benchmarks now.

Those files in the programs/build/ with the .asm.vmh extension are assembly tests. These are
microbenchmarks written in assembly which test specific instructions. Running the assembly tests
is a good way to check for errors in your processor implementation and to narrow down which
instructions are the source of any problems.

It is highly recommended you rerun all the assembly tests after making any changes to your processor
to verify you didn’t break anything. Also, run the assembly tests when trying to locate a bug, as
they will narrow down which instructions are problematic.

Those files in the programs/build/ directory with the extension .bench.vmh are benchmarks which
can be used to evaluate the performance of your processor. When completed, the benchmarks print
out the total number of instructions executed and the number of cycles required to execute those
instructions. Performance is measured in instructions-per-cycle (IPC). The greater the IPC the
better. For our pipeline we can never exceed an IPC of 1, but we should be able to get close to it
by the end of these two labs.

2.6 Using the Test Bench

Our SceMi test bench is software run on the host processor which interacts with the SMIPSv2
processor over the SceMi link, as shown in figure 2. The test bench loads a program for the SMIPSv2

4



processor to execute, starts the processor, and handles toHost requests until the processor indicates
it has completed, either successfully or unsuccessfully.

The test bench takes a single command line argument which is the .vmh file with the program to
run on the SMIPSv2 processor.

To run the test bench, first build the project as described in section 2.4 and compile the SMIPSv2
programs as described in section 2.5. For simulation the executable bsim dut will be created, which
should be running when you start the test bench. For the FPGA you should first program the FPGA
with programfpga on one of the FPGA servers, and wrap the call to tb in runtb.

For example, to run the qsort benchmark on the processor in simulation you could use the commands:

sim$ ./bsim_dut 2> qsort.err > qsort.out &

sim$ ./tb ../../programs/build/qsort.bench.vmh

To run the qsort benchmark on the FPGA, assuming the design has been synthesized already, you
could use the commands:

fpga$ programfpga

fpga$ runtb ./tb ../../programs/build/qsort.bench.vmh

The test bench outputs the result of the program and statistics. The SMIPSv2 program could either
fail, or pass, as determined by a value in the toHost register in the SMIPSv2 Processor, which is set
by the running SMIPSv2 program.

In simulation the test bench can also be run from the Bluespec Workstation. By default the qsort
benchmark is run in the workstation. To change which program to run on the SMIPSv2 processor
in the workstation go to Project->Options, choose the Sce-Mi tab and change the command line
arguments to tb in the simulate command field. When simulating from the workstation, output
from the bsim dut is redirected to bsum dut.out and bsum dut.err.

For your convenience, we have provided scripts run assembly and run benchmarks in the sim/ and
fpga/ directories which run all of the compiled assembly tests and benchmarks respectively. The
scripts in the fpga/ directory require the FPGA has already been programmed.

3 The Memory Interface and Block RAMs

The processor implementation you are provided makes use of memories with combinational reads.
These are modeled in src/IMemory.bsv and src/DMemory.bsv using RegFiles. In this part of the
lab you are asked to change the memory interface to a request/response interface implemented using
Block RAMs on the FPGA.

There are a number of reasons for this exercise. It will hopefully help familiarize you with the
processor code, it introduces you to Block RAMs, which will likely be useful in your final projects,
and it is required to make the design run on the FPGA.

3.1 Block RAMs

The registers you instantiate in your hardware designs are mapped to slice registers on the FPGA.
Slice registers are not well suited for memories because they are not very dense and require large

5



muxing logic to select the data.

Block RAMs are on-chip memory resources available to use on the FPGA. They are much denser
than slice registers and have built-in logic to perform the address decoding. To read from a Block
RAM, you give it the address to read from, and the data will be available on the next cycle. The
XUPv5 FPGAs we are using have about 600K bytes worth of Block RAM storage.

Another form of memory storage available on the XUPv5 is DRAM. In contrast to Block RAMs,
DRAM is off-chip memory. DRAM has a capacity of 1G bytes worth of storage, but may take 10s
of cycles to access. In practice, Block RAMs are much easier to use than DRAM.

The RegFiles used to model the memory in IMemory.bsv and DMemory.bsv use 16 bit addresses.
This was chosen specifically so that the 2 memories, with 64K words, and 4 bytes per word take
up only 2 ∗ 64K ∗ 4 = 512K bytes and can be implemented on the FPGA using Block RAMs.
Fortunately this amount of memory is adequate for all the assembly tests and benchmark programs.

The Bluespec library includes support for using Block RAMs in the BRAM package. This support
is described in detail in section C.1.5 of the Bluespec reference guide. The Bluespec BRAM modules
have a request/response interface. For example, to instantiate a BRAM in your Bluespec design
which stores elements of type DataType and uses an address of type AddrType, import the BRAM

package and write something like:

module mkFoo();

BRAM_Configure cfg = defaultValue;

BRAM1Port#(AddrType, DataType) bram <- mkBRAM1Server(cfg);

...

The width of the address and data types determine the size of Block RAM instantiated.

The request type for a BRAM is described in the reference guide. It includes a boolean flag indicating
whether the request is a read request or a write request, the address to read from or write to, the
data to write, and whether to give a response on write or not. For example, to write the value 42
to address 7, you might issue a request as:

rule foo ();

bram.portA.request.put(BRAMRequest {

write: True,

responseOnWrite: False,

address: 7,

datain: 42});

...

The response type of the BRAM interface is the data read for read requests.

3.2 Updating the Memory

To use Block RAMs for the instruction and data memories requires the memory interface change
to a request/response style. For example, a new interface for the data memory which would be
appropriate is:

interface DMemory;

6



interface Put#(MemReq) req;

interface Get#(MemResp) resp;

interface MemInitIfc init;

endinterface

Problem 1: Change the instruction memory (IMemory.bsv) and data memory (DMemory.bsv) to
use Block RAMs and a request/response interface like the one shown above (The file MemInit.bsv

contains a MemInit block for BRAMs you may find useful). You will have to update the processor
implementation (Proc.bsv) to use the new request/response interface. This may require adding
more stages to the processor. After changing the memories, verify the processor still works in
simulation.

Problem 2: Run your processor design on the FPGA. You will likely need to introduce more stages
in the processor to break up long critical paths and meet timing. Can you tell in the synthesis how
much of the Block RAM resources on the FPGA your design is consuming?

4 Handling Control Hazards

To efficiently use hardware, all stages of the processor should execute concurrently. As a first step
in this direction, you should decouple the fetch stage from the rest of the pipeline so fetch can run
concurrently with the rest of the pipeline.

As discussed in the lectures, when fetch is decoupled from the rest of the pipeline, there arises the
possibility of control hazards. The fetch stage must predict what the next instruction is before the
execute stage has computed the actual next instruction. If the fetch stage predicts incorrectly, the
incorrect instructions it fetched must not be executed.

Problem 3: Decouple your fetch stage from the rest of the pipeline. Use the epoch scheme discussed
in lecture to properly handle the control hazards that arise. Use the mkPcPlus4 address predictor
provided in AddrPred.bsv to predict the next instruction to fetch. Pass the predicted pc to the
exec function, and check the returned eInst.mispredict to identify when mis-prediction occurs.
Verify your process still works correctly in simulation.

If you have properly decoupled your fetch stage from the rest of the pipeline, the doFetch rule
should no longer be guarded with stage == Fetch, and the doFetch rule should be concurrently
schedulable (not conflicting) with the rules for the remaining stages in the pipeline. You may need
to introduce Ehrs in your design to achieve this.

5 Handling Data Hazards

The next lab will ask you to decouple the rest of the stages of your processor so it is fully pipelined.
You will need to handle data hazards using the scoreboard approach described in lecture. Though
you are not asked to handle data hazards for lab5, if you have free time left over this week, it would
be wise to get an early start on lab 6 and handle data hazards in your pipeline.

7



6 What to Turn In

When you are done updating the memories to use block rams and have updated your processor to
handle control hazards, check in your code via git. For example:

smips$ git add -u .

smips$ git commit -m "Lab 5 submission"

smips$ git push

8



A SMIPSv2 Instruction Set

31 26 25 21 20 16 15 11 10 6 5 0

opcode rs rt rd shamt funct R-type
opcode rs rt immediate I-type
opcode target J-type

Load and Store Instructions
100011 base dest signed offset LW rt, offset(rs)
101011 base dest signed offset SW rt, offset(rs)

I-Type Computational Instructions
001001 src dest signed immediate ADDIU rt, rs, signed-imm.
001010 src dest signed immediate SLTI rt, rs, signed-imm.
001011 src dest signed immediate SLTIU rt, rs, signed-imm.
001100 src dest zero-ext. immediate ANDI rt, rs, zero-ext-imm.
001101 src dest zero-ext. immediate ORI rt, rs, zero-ext-imm.
001110 src dest zero-ext. immediate XORI rt, rs, zero-ext-imm.
001111 00000 dest zero-ext. immediate LUI rt, zero-ext-imm.

R-Type Computational Instructions
000000 00000 src dest shamt 000000 SLL rd, rt, shamt
000000 00000 src dest shamt 000010 SRL rd, rt, shamt
000000 00000 src dest shamt 000011 SRA rd, rt, shamt
000000 rshamt src dest 00000 000100 SLLV rd, rt, rs
000000 rshamt src dest 00000 000110 SRLV rd, rt, rs
000000 rshamt src dest 00000 000111 SRAV rd, rt, rs
000000 src1 src2 dest 00000 100001 ADDU rd, rs, rt
000000 src1 src2 dest 00000 100011 SUBU rd, rs, rt
000000 src1 src2 dest 00000 100100 AND rd, rs, rt
000000 src1 src2 dest 00000 100101 OR rd, rs, rt
000000 src1 src2 dest 00000 100110 XOR rd, rs, rt
000000 src1 src2 dest 00000 100111 NOR rd, rs, rt
000000 src1 src2 dest 00000 101010 SLT rd, rs, rt
000000 src1 src2 dest 00000 101011 SLTU rd, rs, rt

Jump and Branch Instructions
000010 target J target
000011 target JAL target
000000 src 00000 00000 00000 001000 JR rs
000000 src 00000 dest 00000 001001 JALR rd, rs
000100 src1 src2 signed offset BEQ rs, rt, offset
000101 src1 src2 signed offset BNE rs, rt, offset
000110 src 00000 signed offset BLEZ rs, offset
000111 src 00000 signed offset BGTZ rs, offset
000001 src 00000 signed offset BLTZ rs, offset
000001 src 00001 signed offset BGEZ rs, offset

System Coprocessor (COP0) Instructions
010000 00000 dest cop0src 00000 000000 MFC0 rt, rd
010000 00100 src cop0dest 00000 000000 MTC0 rt, rd

Figure 3: SMIPSv2 Instruction Set

9


	Introduction
	The Processor Infrastructure
	Getting Started
	The Source Code
	The SceMi Setup
	Building the Project
	Compiling the Assembly Tests and Benchmarks
	Using the Test Bench

	The Memory Interface and Block RAMs
	Block RAMs
	Updating the Memory

	Handling Control Hazards
	Handling Data Hazards
	What to Turn In
	SMIPSv2 Instruction Set

