
Lab 6: Pipelining an SMIPSv2 Processor: Part II

6.375 Laboratory 5
Assigned: March 15, 2013

Due: March 22, 2013

1 Introduction

This laboratory assignment continues the previous lab, improving the performance of your SMIPSv2
pipeline. Your task is to produce a fully pipelined design which functions correctly and achieves
adequate performance in simulation and on the FPGA. In order to achieve this you will be asked to
implement a bypass register file, handle data hazards properly, verify your design is fully pipelined,
use a better branch predictor, and meet 100Mhz as reported by synthesis. We then ask you to explore
whether a bypassed register file improves the performance of your processor when the critical path
is taken into account.

2 Bypassing the Reg File

The register file we use has the property that when reads and writes occur in the same cycle, the
value read will be the old value. This means it is up to you to ensure you do not read and write the
same register in the same cycle unless you want to read the old value of that register.

When pipelining your processor, it may be the case you wish to use a bypass register file with the
property that when reads and writes on the same register occur in the same cycle, the written values
are visible to the read in that cycle.

Problem 1: Implement a bypass register file which schedules writes before reads and bypasses
written data if a simultaneous read address corresponds to the write address.

The MIPS ISA requires that a read from register r0 always return the value 0. This is why the
implementation of mkRFile has the conditional statement

if(rindx!=0) rfile[rindx] <= data;

when writing to the register file. Your implementation of the bypassed register file must follow these
same semantics. It should always return 0 for register r0, even if a nonzero value was written to
register r0 the instruction before.

3 Handling Data Hazards

Problem 2: Pipeline your processor, handling data hazards properly using the scoreboard technique
discussed in lecture. The file src/Scoreboard.bsv contains an implementation of a scoreboard for
you to use. Verify your pipelined processor works correctly in simulation. If you have pipelined your
processor properly, you should no longer need the state register.



4 Verifying Concurrency in Your Pipeline

For your processor pipeline to be efficient, every stage should be capable of executing concurrently.
Sometimes it can be hard to tell if your stages can execute concurrently or if there is some scheduling
conflict.

4.1 Schedule Analysis in the Workstation

The Bluespec Workstation provides a Schedule Analysis tool which is helpful in understanding why
rules don’t fire when you expect them to.

When you have compiled your design you can go to Window->Schedule Analysis, which opens up
the schedule analysis window. From that window go to Module->Load and select mkProc as the
module to load.

The rule order tab lists all the rules in the mkProc module. The rule names may change slightly
depending on the synthesis boundaries, but will always end with the original string which appeared
in your BSV source. If you select a rule you can see the rule’s predicate and any blocking rules. Pay
close attention to the predicate as you may have invoked a method with an implicit condition which
you didn’t count on. The predicate listed here includes all lifted implicit conditions.

The rules are listed in the rule order tab in their logical order. This is the final global ordering
of all the rules. The term urgency refers to the relative priority given to two conflicting rules by
the bluespec compiler. If two rules conflict the “more urgent” rule will fire if its guard is true,
blocking the firing of the “less urgent” rule. The term earliness is used to describe the logical
ordering assigned by the bluespec compiler to two rules which don’t conflict. If rules A and B are
sequentially composable, (A before B), then A will appear to fire before B; A will be “earlier” than
B, and appear before B in the logical ordering of rules. If A and B are conflict free, the Bluespec
compiler makes an arbitrary choice in assigning relative earliness to the two rules. If the two rules
are conflicting or mutually exclusive, their order is meaningless, so the compiler chooses an arbitrary
order. Relative urgency and earliness can be set by using the pragmas descending urgency and
execution order, which are described in the Bluespec reference guide.

You can get more information about how two rules are related by going to the Rule Relations tab in
the Schedule Analysis window. For example, select the doFetch rule for Rule 1 and the doExecute

rule for Rule 2 and click Analyze. The analysis window will report something like that shown in
figure 1.

Those items listed under the <> indicate reasons why the rules are not conflict free. For example,
the first item in this specific example:

pc.read vs. pc.write

says the doFetch rule calls the read method of the pc register while the doExecute calls the write

method of the pc register. This places a restriction on the ordering of the doFetch and doExecute

rules. It is okay to have items listed under <> as long as they all require the same ordering constraint.

Those items listed under the < are reasons the first rule cannot be executed in sequence before
the second rule. In this case we see that the pc register is written in doFetch which disallows the
doExecute rule to be executed in sequence before doFetch.

Taken together this means there is a conflict between the rules and they will never both fire in the
same cycle.

2



Scheduling info for rules "RL_doFetch" and "RL_doExecute":

predicates are not disjoint

<>

conflict:

calls to

pc.read vs. pc.write

pc.write vs. pc.read

pc.write vs. pc.write

epoch.read vs. epoch.write

< conflict: calls to pc.write vs. pc.read

no resource conflict

no cycle conflict

no attribute conflict

Figure 1: Rule Analysis between doFetch and doExecute

Problem 3: Verify your processor is fully pipelined, and that all stages can execute concurrently. If
your processor is not fully pipelined, change it so it is fully pipelined. You may need to use different
kinds of Fifos, Scoreboards, or Reg Files to achieve concurrency, and you may wish to use Ehrs. See
Fifo.bsv and Scoreboard.bsv to see what kinds of Fifos and scoreboards are available for you to
use. Verify your design still works correctly in simulation.

5 Using a Better Branch Predictor

Currently your doFetch stage guesses the next pc will always be pc+4. We can improve the per-
formance of our processor by using a smarter branch predictor. The file src/AddrPred.bsv in-
cludes an implementation of a branch target buffer predictor. The mkBtb predictor needs to be
updated with information about actual branches taken. See the definition of the Redirect type in
src/ProcTypes.bsv for more information on what fields the branch predictor expects to be updated
with.

Problem 4: Use the mkBtb predictor in your pipeline instead of the mkPcPlus4 predictor. Verify
your processor still works in simulation. If you have used the new branch predictor properly, the
IPC of your processor should have increased.

6 Completing the SMIPs Pipeline

Problem 5: Pipeline your design so it can meet 100Mhz according to the synthesis report. You
may need to add more pipeline stages to achieve this clock rate. Verify your processor is still fully
pipelined (all stages can run concurrently) and works correctly. Then synthesize your design and
run it on the FPGA. Note that the Fifo and Scoreboard implementations use the modulo operator
and hence are only synthesizable if their size is a power of two.

It was not hard for the TA to achieve a fully pipelined design which synthesis reports can meet
120Mhz. Table 1 shows the IPC of TA’s design. You should be able to achieve similar IPC results
in your implementation.

3



Benchmark IPC
median 0.64
multiply 0.71
qsort 0.66
towers 0.76
vvadd 0.82

Table 1: TA’s IPC

7 Design Exploration

IPC measures the performance of your processor in terms of cycles. This fails to take into account
the critical path of your design. A processor with lower IPC may perform better in reality if it can
be clocked at a higher frequency.

Let IPS be the performance of your processor in instructions per second, assuming the design is run
at the frequency reported possible in the synthesis report. For example, if synthesis says your design
can run at 108Mhz, and your IPC is x, then IPS = 108M ∗ x instructions per second.

Problem 6: Experiment with two different configurations of your pipeline. One which uses the
bypassed register file and another which uses the non-bypassed register file. Use the results of your
experiments to answer discussion question 3 below.

8 Discussion Questions

Question 1: IPC

List the final IPC of your design for each of the provided benchmarks.

Question 2: Design Choices

Discuss and motivate any design choices you made. What size and type Fifos, Scoreboard, and
register file did you end up using, and why is this a good configuration? In what logical order are
your pipeline stages executed?

Question 3: Critical Path/IPC Tradeoff

Report the IPS of your best processor design using the bypassed register file and your best pro-
cessor design using the non-bypassed register file. Does the bypassed register file improve the real
performance of your processor? Why or why not?

9 What to Turn In

When you have completed the lab you should check in a final version via git. This should include
your bypassed register file implementation and pipelined processor functional in simulation and on

4



the FPGA. Also include a file answers in the top level lab directory with your answers to the
discussion questions. Remember to add to git any new source files you may have introduced. For
example, if you didn’t add any new source files, you could run

smips$ git add -u .

smips$ git add answers

smips$ git commit -m "Lab 6 final submission"

smips$ git push

5


	Introduction
	Bypassing the Reg File
	Handling Data Hazards
	Verifying Concurrency in Your Pipeline
	Schedule Analysis in the Workstation

	Using a Better Branch Predictor
	Completing the SMIPs Pipeline
	Design Exploration
	Discussion Questions
	What to Turn In

