
1

Pipelined Processors

Arvind
Computer Science & Artificial Intelligence Lab.
Massachusetts Institute of Technology

March 11, 2013 http://csg.csail.mit.edu/6.375 L10-1

Two-Cycle SMIPS: Analysis

PC

Inst
Memory

Decode

Register File

Execute

Data
Memory

+4 fr

stage

In any given clock 
cycle, lot of unused 

hardware !

ExecuteFetch

Pipeline execution of instructions to increase 
the throughput 

March 11, 2013 http://csg.csail.mit.edu/6.375 L10-2



2

Problems in Instruction 
pipelining

Control hazard: Insti+1 is not known until Insti is at least 
decoded. So which instruction should be fetched?
Structural hazard: Two instructions in the pipeline may 
require the same resource at the same time, e.g., 
contention for memory
Data hazard: Insti may affect the state of the machine (pc, 
rf, dMem) – Insti+1must be fully cognizant of this change

PC Decode

Register File

Execute

Data
Memory

Inst
Memory

+4 f2d

InstiInsti+1

none of these hazards were present in the IFFT pipeline  
March 11, 2013 http://csg.csail.mit.edu/6.375 L10-3

Arithmetic versus 
Instruction pipelining

The data items in an arithmetic pipeline, e.g., 
IFFT, are independent of each other

The entities in an instruction pipeline affect 
each other
 This causes pipeline stalls or requires other fancy 

tricks to avoid stalls
 Processor pipelines are significantly more 

complicated than arithmetic pipelines

sReg1 sReg2
x

inQ

f0 f1 f2

outQ

March 11, 2013 http://csg.csail.mit.edu/6.375 L10-4



3

The power of computers comes 
from the fact that the 
instructions in a program are 
not independent of each other

 must deal with hazard

March 11, 2013 http://csg.csail.mit.edu/6.375 L10-5

Control Hazards

Insti+1 is not known until Insti is at least decoded. So 
which instruction should be fetched?
General solution – speculate, i.e., predict the next 
instruction address
 requires the next-instruction-address prediction machinery; can 

be as simple as pc+4 
 prediction machinery is usually elaborate because it dynamically 

learns from the past behavior of the program
What if speculation goes wrong?
 machinery to kill the wrong-path instructions, restore the correct 

processor state and restart the execution at the correct pc 

PC Decode

Register File

Execute

Data
Memory

Inst
Memory

+4 f2d

InstiInsti+1

March 11, 2013 http://csg.csail.mit.edu/6.375 L10-6



4

Two-stage Pipelined SMIPS

PC Decode

Register File

Execute

Data
Memory

Inst
Memory

pred
f2d

Fetch stage must predict 
the next instruction to  
fetch to have any pipelining 

Fetch stage Decode-RegisterFetch-Execute-Memory-
WriteBack stage

In case of a misprediction the 
Execute stage must kill the 
mispredicted instruction in f2d

kill misprediction
correct pc

March 11, 2013 http://csg.csail.mit.edu/6.375 L10-7

Pipelining Two-Cycle SMIPS –
singlerule
rule doPipeline ;

let inst = iMem.req(pc);
let ppc = nextAddr(pc); let newPc = ppc;
let newIr=Valid(Fetch2Decode{pc:pc,ppc:ppc,inst:inst});
if(isValid(ir)) begin
let x = validValue(ir); let irpc = x.pc; 
let ppc = x.ppc; let inst = x.inst;
let dInst = decode(inst);
... register fetch ...;
let eInst = exec(dInst, rVal1, rVal2, irpc, ppc);
...memory operation ...
...rf update ...
if (eInst.mispredict)  begin
newIr = Invalid;
newPc = eInst.addr;    end

end
pc <= newPc; ir <= newIr;

endrule

fetch

execute

March 11, 2013 http://csg.csail.mit.edu/6.375 L10-8



5

Inelastic versus Elastic 
pipeline

The pipeline presented is inelastic, that is, it 
relies on executing Fetch and Execute together 
or atomically
In a realistic machine, Fetch and Execute 
behave more asynchronously; for example 
memory latency or a functional unit may take 
variable number of cycles
If we replace ir by a FIFO (f2d) then it is 
possible to make the machine more elastic, 
that is, Fetch keeps putting instructions into 
f2d and Execute keeps removing and 
executing instructions from f2d.

March 11, 2013 http://csg.csail.mit.edu/6.375 L10-9

An elastic Two-Stage pipeline 
rule doFetch ;

let inst = iMem.req(pc);
let ppc = nextAddr(pc); pc <= ppc;
f2d.enq(Fetch2Decode{pc:pc,ppc:ppc,inst:inst});

endrule

rule doExecute;
let x = f2d.first; let inpc = x.pc; 
let ppc = x.ppc; let inst = x.inst;
let dInst = decode(inst);
... register fetch ...;
let eInst = exec(dInst, rVal1, rVal2, inpc, ppc);
...memory operation ...
...rf update ...
if (eInst.mispredict)            begin

pc <= eInst.addr; f2d.clear; end
else f2d.deq;

endrule

Can these rules 
execute concurrently 
assuming the FIFO 
allows concurrent enq, 
deq and clear? 

March 11, 2013 http://csg.csail.mit.edu/6.375 L10-10



6

An elastic Two-Stage pipeline:
for concurrency make pc into an EHR 
rule doFetch ;

let inst = iMem.req(pc[0]);
let ppc = nextAddr(pc[0]); pc[0] <= ppc;
f2d.enq(Fetch2Decode{pc:pc[0],ppc:ppc,inst:inst});

endrule

rule doExecute;
let x = f2d.first; let inpc = x.pc; 
let ppc = x.ppc; let inst = x.inst;
let dInst = decode(inst);
... register fetch ...;
let eInst = exec(dInst, rVal1, rVal2, inpc, ppc);
...memory operation ...
...rf update ...
if (eInst.mispredict)            begin

pc[1] <= eInst.addr; f2d.clear; end
else f2d.deq;

endrule

These rules execute 
concurrently assuming 
the FIFO has
(enq CF deq) and
(enq < clear)

March 11, 2013 http://csg.csail.mit.edu/6.375 L10-11

module mkCFFifo(Fifo#(2, t)) provisos(Bits#(t, tSz));
Ehr#(3, t) da <- mkEhr(?);
Ehr#(2, Bool) va <- mkEhr(False);
Ehr#(2, t) db <- mkEhr(?);
Ehr#(3, Bool) vb <- mkEhr(False);
rule canonicalize if(vb[2] && !va[2]);
da[2] <= db[2]; va[2] <= True; vb[2] <= False; endrule

method Action enq(t x) if(!vb[0]);
db[0] <= x; vb[0] <= True; endmethod

method Action deq if (va[0]);
va[0] <= False; endmethod

method t first if(va[0]);
return da[0]; endmethod

method Action clear;

endmodule

Conflict-free FIFO with a 
Clear method

If there is only one 
element in the FIFO it 
resides in da

db da

first CF enq
deq CF enq
first < deq
enq < clear

March 11, 2013 http://csg.csail.mit.edu/6.375 L10-12



7

Why canonicalize must be 
last rule to fire

first CF enq
deq CF enq
first < deq
enq < clear

March 11, 2013 http://csg.csail.mit.edu/6.375 L10-13

rule foo ;
f.deq; if (p) f.clear

endrule

Consider rule foo. If p is false then canonicalize
must fire after deq for proper concurrency.

If canonicalize uses EHR indices between deq and 
clear, then canonicalize won’t fire when p is false

Correctness issue

<inst, pc, ppc>

Once Execute redirects the PC, 
 no wrong path instruction should be executed
 the next instruction executed must be the redirected 

one
This is true for the code shown because
 Execute changes the pc and clears the FIFO 

atomically 
 Fetch reads the pc and enqueues the FIFO atomically

Fetch Execute

PC

March 11, 2013 http://csg.csail.mit.edu/6.375 L10-14



8

Killing fetched instructions
In the simple design with combinational memory 
we have discussed so far, the mispredicted
instruction was present in the f2d. So the 
Execute stage can atomically
 Clear the f2d 
 Set the pc to the correct target

In highly pipelined machines there can be 
multiple mispredicted and partially executed 
instructions in the pipeline; it will generally take 
more than one cycle to kill all such instructions

March 11, 2013 http://csg.csail.mit.edu/6.375 L10-15

Epoch: a method for 
managing control hazards

Add an epoch register in the processor state 
The Execute stage changes the epoch 
whenever the pc prediction is wrong and sets 
the pc to the correct value
The Fetch stage associates the current epoch 
with every instruction when it is fetched 

PC

iMem

pred f2d

Epoch

Fetch Execute

inst

targetPC

The epoch of the 
instruction is examined 
when it is ready to 
execute. If the processor 
epoch has changed the 
instruction is thrown away 

March 11, 2013 http://csg.csail.mit.edu/6.375 L10-16



9

Discussion
Epoch based solution kills one wrong-path 
instruction at a time in the execute stage
It may be slow, but it is more robust in more 
complex pipelines, if you have multiple stages 
between fetch and execute or if you have 
outstanding instruction requests to the iMem
It requires the Execute stage to set the pc and 
epoch registers simultaneously which may result 
in a long combinational path from Execute to 
Fetch

March 11, 2013 http://csg.csail.mit.edu/6.375 L10-17

An epoch based solution
rule doFetch ;

let inst=iMem.req(pc[0]); 
let ppc=nextAddr(pc[0]); pc[0]<=ppc;
f2d.enq(Fetch2Decode{pc:pc[0],ppc:ppc,epoch:epoch,

inst:inst});
endrule
rule doExecute;

let x=f2d.first; let inpc=x.pc; let inEp=x.epoch;
let ppc = x.ppc; let inst = x.inst;
if(inEp == epoch) begin
let dInst = decode(inst); ... register fetch ...;
let eInst = exec(dInst, rVal1, rVal2, inpc, ppc);
...memory operation ...
...rf update ...
if (eInst.mispredict)                        begin

pc[1] <= eInst.addr; epoch <= epoch + 1; end
end

f2d.deq; endrule

Can these rules execute concurrently ? 

March 11, 2013 http://csg.csail.mit.edu/6.375 L10-18



10

Decoupled Fetch and Execute

<inst, pc, ppc, 
epoch>

<corrected pc, 
new epoch>

In decoupled systems a subsystem reads and 
modifies only local state atomically
 In our solution, pc and epoch are read by both rules

Properly decoupled systems permit greater 
freedom in independent refinement of 
subsystems

Fetch Execute

March 11, 2013 http://csg.csail.mit.edu/6.375 L10-19

A decoupled solution using 
epochs

Add fEpoch and eEpoch registers to the processor 
state; initialize them to the same value 
The epoch changes whenever Execute detects  
the pc prediction to be wrong. This change is 
reflected immediately in eEpoch and eventually 
in fEpoch via a message from Execute to Fetch
Associate the fEpoch with every instruction when 
it is fetched 
In the execute stage, reject, i.e., kill, the 
instruction if its epoch does not match eEpoch

fEpoch eEpochfetch execute

March 11, 2013 http://csg.csail.mit.edu/6.375 L10-20



11

Control Hazard resolution
A robust two-rule solution

PC

Inst
Memory

Decode

Register File

Execute

Data
Memory

+4 f2d

FIFO

FIFO

re
di

re
ct

Execute sends information about 
the target pc to Fetch, which  
updates fEpoch and pc whenever 
it looks at the redirect PC fifo

fE
po

ch

eE
po

ch

March 11, 2013 http://csg.csail.mit.edu/6.375 L10-21

Two-stage pipeline 
Decoupled code structure
module mkProc(Proc);

Fifo#(Fetch2Execute) f2d <- mkFifo;
Fifo#(Addr) execRedirect <- mkFifo;
Reg#(Bool) fEpoch <- mkReg(False);
Reg#(Bool) eEpoch <- mkReg(False);

rule doFetch;
let inst = iMem.req(pc);
...

f2d.enq(... inst ..., fEpoch); 
endrule

rule doExecute;

if(inEp == eEpoch) begin
Decode and execute the instruction; update state;
In case of misprediction,   execRedirect.enq(correct pc);

end
f2d.deq;

endrule

endmodule

March 11, 2013 http://csg.csail.mit.edu/6.375 L10-22



12

The Fetch rule
rule doFetch;

let inst = iMem.req(pc);

if(!execRedirect.notEmpty)

begin
let ppc = nextAddrPredictor(pc);

pc <= ppc;
f2d.enq(Fetch2Execute{pc: pc, ppc: ppc, 

inst: inst, epoch: fEpoch});

end

else

begin
fEpoch <= !fEpoch;  pc <= execRedirect.first;

execRedirect.deq;

end
endrule

pass the pc and  predicted pc 
to the execute stage

March 11, 2013 http://csg.csail.mit.edu/6.375 L10-23

The Execute rule
rule doExecute;

let inst = f2d.first.inst; let pc    = f2d.first.pc;
let ppc = f2d.first.ppc; let inEp = f2d.first.epoch;
if(inEp == eEpoch) begin

let dInst = decode(inst);
let rVal1 = rf.rd1(validRegValue(dInst.src1));
let rVal2 = rf.rd2(validRegValue(dInst.src2));  
let eInst = exec(dInst, rVal1, rVal2, pc, ppc);
if(eInst.iType == Ld) eInst.data <-

dMem.req(MemReq{op: Ld, addr: eInst.addr, data: ?});
else if (eInst.iType == St) let d <-

dMem.req(MemReq{op: St, addr: eInst.addr, data: eInst.data});
if (isValid(eInst.dst))

rf.wr(validRegValue(eInst.dst), eInst.data);
if(eInst.mispredict) begin

execRedirect.enq(eInst.addr); eEpoch <= !inEp;

end
end
f2d.deq;

endrule

exec returns a flag 
if there was a fetch 
misprediction

Can these rules execute concurrently?

March 11, 2013 http://csg.csail.mit.edu/6.375 L10-24



13

Data Hazards

March 11, 2013 http://csg.csail.mit.edu/6.375 L10-25

Consider a different two-
stage pipeline

PC Decode

Register File

Execute

Data
Memory

Inst
Memory

pred f2d

Suppose we move the pipeline stage from Fetch to after Decode 
and Register fetch

Fetch Execute, Memory, WriteBack

InstiInsti+1

What hazards will the pipeline have?  

Decode,
RegisterFetch

Control?  
March 11, 2013 http://csg.csail.mit.edu/6.375 L10-26



14

A different 2-Stage pipeline:
2-Stage-DH pipeline

PC

Inst
Memory

Decode

Register File

Execute

Data
Memory

d2e

re
di

re
ct

fE
po

ch

eEpoch

pred

Fifos
Use the same epoch solution for 
control hazards as before

Fetch, Decode, RegisterFetch Execute, Memory, WriteBack

Modify the code for the 2-Stage-CHO pipeline

March 11, 2013 http://csg.csail.mit.edu/6.375 L10-27

Type Decode2Execute

typedef struct {
Addr pc; Addr ppc; Bool epoch;
DecodedInst dInst; Data rVal1; Data rVal2;

} Decode2Execute deriving (Bits, Eq);

value instead of register names

The Fetch stage, in addition to fetching the 
instruction, also decodes the instruction and 
fetches the operands from the register file. It 
passes these operands to the Execute stage 

March 11, 2013 http://csg.csail.mit.edu/6.375 L10-28



15

2-Stage-DH pipeline
module mkProc(Proc);
Reg#(Addr)        pc <- mkRegU;
RFile rf <- mkRFile;
IMemory iMem <- mkIMemory;
DMemory dMem <- mkDMemory;

Fifo#(Decode2Execute) d2e <- mkFifo;

Reg#(Bool)    fEpoch <- mkReg(False);
Reg#(Bool)    eEpoch <- mkReg(False);
Fifo#(Addr) execRedirect <- mkFifo;

rule doFetch …
rule doExecute …

March 11, 2013 http://csg.csail.mit.edu/6.375 L10-29

2-Stage-DH pipeline
doFetch rule first attempt
rule doFetch;

let inst = iMem.req(pc);
if(execRedirect.notEmpty) begin
fEpoch <= !fEpoch;  pc <= execRedirect.first;

execRedirect.deq;       end
else 

begin
let ppc = nextAddrPredictor(pc); pc <= ppc;

let dInst = decode(inst);
let rVal1 = rf.rd1(validRegValue(dInst.src1));
let rVal2 = rf.rd2(validRegValue(dInst.src2));  
d2e.enq(Decode2Execute{pc: pc, ppc: ppc, 

dIinst: dInst, epoch: fEpoch,

rVal1: rVal1, rVal2: rVal2});  

end
endrule

moved 
from 
Execute

March 11, 2013 http://csg.csail.mit.edu/6.375 L10-30



16

2-Stage-DH pipeline
doExecute rule first attempt
rule doExecute;

let x = d2e.first;

let dInst = x.dInst; let pc    = x.pc;

let ppc = x.ppc; let epoch = x.epoch;

let rVal1 = x.rVal1; let rVal2 = x.rVal2;

if(epoch == eEpoch) begin 

let eInst = exec(dInst, rVal1, rVal2, pc, ppc);
if(eInst.iType == Ld) eInst.data <-

dMem.req(MemReq{op:Ld, addr:eInst.addr, data:?});
else if (eInst.iType == St) let d <-

dMem.req(MemReq{op:St, addr:eInst.addr, data:eInst.data});
if (isValid(eInst.dst) && 

validValue(eInst.dst).regType == Normal)
rf.wr(validRegValue(eInst.dst), eInst.data);

if(eInst.mispredict) begin
execRedirect.enq(eInst.addr); eEpoch <= !eEpoch; end

end
d2e.deq;

endrule

no 
change

March 11, 2013 http://csg.csail.mit.edu/6.375 L10-31

Data Hazards
fetch & 
decode execute

d2e

time t0 t1 t2 t3 t4 t5 t6 t7 . . . .
FDstage FD1 FD2 FD3 FD4 FD5
EXstage EX1 EX2 EX3 EX4 EX5

I1 Add(R1,R2,R3)
I2 Add(R4,R1,R2)

I2 must be stalled until I1 updates the register file

pc rf dMem

time t0 t1 t2 t3 t4 t5 t6 t7 . . . .
FDstage FD1 FD2 FD2 FD3 FD4 FD5
EXstage EX1 EX2 EX3 EX4 EX5

next lecture: Resolving Data Hazards
March 11, 2013 http://csg.csail.mit.edu/6.375 L10-32


