
6.375 2013 Tutorial I
Introduction to Bluespec

Richard Uhler

February 8, 2013

1 Administrative

Class Website: http://csg.csail.mit.edu/6.375
TA Name: Richard Uhler
TA Email: ruhler@csail.mit.edu
TA Office Hours: Monday, Thursday, 4:30-5:30pm, 38-301
38-301 lab access code: Under investigation
Lab 1: Posted, Due next Friday, Feb 15th

If you have not received any of the class emails, you are not on the email
list. Send me your email and athena username so I can add you to the email
list, give you access to the servers, and set up a lab repository for you.

2 One Rule at a Time

Bluespec SystemVerilog is the high-level hardware description language we
will use extensively in this course. Hardware descriptions in Bluespec consist
of two parts:

State A collection of explicit state elements, such as registers and FIFOs.

Rules A collection of Guarded Atomic Actions which modify the state.

Each rule has two parts: a guard and an atomic action. The guard speci-
fies the condition under which the rule may be applied. If the guard condition
is satisfied, the rule is said to be enabled. The atomic action describes how
the state is modified when the rule is applied.

1

The key to Bluespec is the following execution model:

One Rule at a Time: 1. Choose any one enabled rule

2. Apply that rule’s action to transform the state

3. Go back to (1)

One Rule at a Time is very important. It should always be in the back
of your mind as you use Bluespec.

3 Hello World in Bluespec

Here is a simple Hello, World program in Bluespec:

module mkHelloWorld ();

rule sayhello (True);

$display("hello, world");

endrule

endmodule

It has no state elements. It has a single rule which prints the line “hello,
world”.

Question: What will this Bluespec program do when you run it?
If you answered “Print the line ‘hello, world’ to the screen and stop”, then

review the previous section on One Rule at a Time. What will this Bluespec
program do when you run it?

1. Choose an enabled rule: in this case, the rule sayhello

2. Apply that rule’s action: prints “hello, world” to the screen

3. Choose an enabled rule: in this case, the rule sayhello

4. Apply that rule’s action: prints “hello, world” to the screen

5. Choose an enabled rule: in this case, the rule sayhello

6. Apply that rule’s action: prints “hello, world” to the screen

7. ...

2

This program will print the line “hello, world” to the screen over and over
and over again until the end of time.

If we want the program to print “hello, world” only once, we can introduce
a state element:

module mkHelloWorldOnce ();

Reg#(Bool) said <- mkReg(False);

rule sayhello (!said);

$display("hello, world");

said <= True;

endrule

rule goodbye (said);

$finish();

endrule

endmodule

1. Choose an enabled rule: Initially sayhello is enabled, because !said

is True. goodbye is not enabled, because said is False, so the only
enabled rule is sayhello.

2. Apply sayhello’s action: prints “hello, world” to the screen, and sets
the register said to False

3. Choose an enabled rule: Now said is False, sayhello is not enabled,
and textttgoodbye is enabled, so the only enabled rule is goodbye.

4. Apply goodbye’s action: Calls $finish to terminate the simulation.

4 Using the Bluespec Workstation

The Bluespec Workstation is Bluespec’s IDE. You can use it to compile, link,
explore, and simulate Bluespec designs. To use the Bluespec Workstation,
log on to a linux athena machine. For example, if you are running linux on
your own computer, you can log on remotely to a class server using your
athena username and password:

localhost:~$ ssh -X ruhler@vlsifarm-03.mit.edu

3

To set up your environment with pointers to the class installation of
Bluespec, add the 6.375 course locker and source the class setup script:

vlsifarm-03:~$ add 6.375

vlsifarm-03:~$ source /mit/6.375/setup.sh

Now you can launch the Bluespec Workstation by running the command
bluespec:

vlsifarm-03:~$ bluespec&

Bluespec source code uses the .bsv extension. Bluespec Workstation
project files use the .bspec extension. Save the Bluespec code for the hello
world module in a file called hw.bsv. Launch the Bluespec Workstation.
Create a new project. Set the top file to hw.bsv and the top module to
mkHelloWorld. Compile, link, and simulate to see what happens.

For more information on how to use the Bluespec Workstation, consult the
bluespec user guide, which is available at $BLUESPECDIR/../doc/BSV/user-guide.pdf:

vlsifarm-03:~$ display $BLUESPECDIR/../doc/BSV/user-guide.pdf

5 Exercise

Exercise: Implement a Bluespec module which performs multiplication by
repeated addition. Use a register of type Bit#(16) for the multiplicand, a
register of type Bit#(16) for the multiplier, and a register of type Bit#(16)
for the product. Set the initial value of the multiplicand and multiplier to
your favorite numbers, such as 7 and 5, and set the initial value of the prod-
uct to 0. Implement a rule ’sum’ which is enabled as long as the multiplier
is greater than 0. The ’sum’ rule should increment the product by the multi-
plicand and decrement the multiplier by one. Implement another rule which
displays the final product when the multiplier reaches 0 and terminates the
simulation.

6 Reference Documents

$BLUESPECDIR/../doc/BSV/user-guide.pdf Describes how to use
the Bluespec Workstation for compiling, linking, and simulating Blue-
spec designs.

4

$BLUESPECDIR/../doc/BSV/reference-guide.pdf Bluespec Language
Reference.

$BLUESPECDIR/../doc/BSV/bsv-by-example.pdf Book which teaches
Bluespec with many examples.

7 Tips for Lab 1

7.1 Registers vs. Variables

Registers in Bluespec are state elements which persist across rule executions.
To apply a rule’s action, first all registers are read, the body of the action is
executed to determine the new values for registers, and finally the registers
are updated with those new values.

Variables are just names for things, they are not associated with any stor-
age elements. The value of a variable is based syntactically on the previous
line of code where the variable was set.

For example, consider the following module:

module mkFoo ();

Reg#(Bit#(32)) rx <- mkReg(7);

Reg#(Bit#(32)) ry <- mkReg(5);

rule regrule (True);

ry <= rx + ry;

rx <= rx - ry;

$display("rx: ", rx, " ry: ", ry);

endrule

rule varrule (True);

Bit#(32) vx = rx;

Bit#(32) vy = ry;

vy = vx + vy;

vx = vx - vy;

ry <= vy;

rx <= vx;

$display("vx: ", vx, " vy: ", vy);

endrule

5

endmodule

When the regrule is applied, assuming rx is 7 and ry is 5, the first step
is to read the register values. Conceptually the rule then becomes:

rule regrule (True);

ry <= 7 + 5;

rx <= 7 - 5;

$display("rx: ", 7, " ry: ", 5);

endrule

The statements of the action are then executed from top to bottom to
determine the new values of the registers:

rule regrule (True);

ry <= 12;

rx <= 2;

$display("rx: ", 7, " ry: ", 5);

endrule

The final result of executing the rule is ry is set to 12, rx is set to 2, and
the line ”rx: 7, ry: 5” is printed to the screen.

Contrast this with what happens when varrule is executed, assuming
the same initial state. First register values are read:

rule varrule (True);

Bit#(32) vx = 7;

Bit#(32) vy = 5;

vy = vx + vy;

vx = vx - vy;

ry <= vy;

rx <= vx;

$display("vx: ", vx, " vy: ", vy);

endrule

Then the rule statements are executed from top to bottom, with variables
replaced with their most recent definition:

6

rule varrule (True);

Bit#(32) vx = 7;

Bit#(32) vy = 5;

vy = 7 + 5;

vx = 7 - (7 + 5);

ry <= (7 + 5);

rx <= (7 - (7 + 5));

$display("vx: ", (7 + 5), " vy: ", (7 - (7 + 5)));

endrule

The end result is ry is set to 12, rx is set to -5, and the line ”vx: 12 vy:
-5” is printed to the screen.

Variables may be reassigned any number of times within a rule. A register
may only be set once by a rule.

7.2 Different Kinds of Assignments

Equals (=) Used for variable definition. For example:

rule myrule (True);

Bit#(32) v = 3;

$display(v);

v = v + 5;

$display(v);

endrule

Less Than Equals (<=) Used for register assignments within a rule. For
example:

Reg#(Bit#(32)) r <- mkReg(3);

rule myrule (True);

r <= 5;

...

<= is actually just syntactic sugar for calling a register’s write method:

rule myrule (True);

r._write(5);

...

7

Less Than Dash (<-)(outside of rule) Used for instantiated state ele-
ments. For example:

module mkFoo ();

Reg#(Bool) r <- mkReg(True);

...

Less Than Dash(<-)(within a rule) Used to get the result of an action
method:

module mkFoo ();

rule foo (True);

Bit#(32) x = 4;

$display(x);

x <- multiplier.getResult();

$display(x);

...

8

