
Register renaming and superscalar RISCV
processor

Thomas Bourgeat - 6.375

May 11, 2016

RISCV out-of-order superscalar implementation

Overview

Figure 1:Figure 1

Descriptive overview

I the front-end that takes care of fetching and decoding
instructions. So it handles virtual memory, request to caches
and TLB, and some branch prediction.

I the back-end that takes care of renaming the instructions, to
execute them and to commit them.

I the memory subsystem that performs the memory requests
required by the front-end and the back-end.

Renaming

Specification

interface RegRenamingTable;
method PhyRegs get_renaming(ArchRegs r);
method Action claim_renaming(ArchRegs r,

SpecBits spec_bits);
method Action commit;
interface SpeculationUpdate specUpdate;

method Action incorrectSpeculation(SpecTag tag);
method Action correctSpeculation(SpecTag tag);

endinterface

Naive implementation

Figure 2:Figure 1

State used

RegFile#(ArchRIndx, PhyRIndx) data <- mkRegFileFull();

// In-flight renaming stack
Vector#(TSub#(NumPhyReg,NumArchReg), Reg#(Bool))

valid <- replicateM(mkReg(False));

Vector#(TSub#(NumPhyReg,NumArchReg), Reg#(PhyRIndx))
stackPhy <-replicateM(mkReg(unpack(0)));

Vector#(TSub#(NumPhyReg,NumArchReg), Reg#(ArchRIndx))
stackArch <- replicateM(mkReg(unpack(0)));

Vector#(TSub#(NumPhyReg,NumArchReg), Reg#(SpecBits))
stackSpecBits <- replicateM(mkReg(unpack(0)));

so slow

I It cannot elaborate a normal size circuit.

Would there be some magic tricks? Functional
Programming!

let listzip = zip4(
readVEhr(0,valid),
readVReg(stackArch),
readVReg(stackPhy),
indexes);

let leftToRightR1 = map_maybe(
tpl_3,
find(vectorSearchL(archR1,enqP),

reverse(listzip)
)

);

Why is it faster?

I When I write map(f,v) the compiler knows that all the
iterations can be elaborated independently

I When I write a fold, the compiler knows exactly what is the
state, or the “dependentness” that is passing around just
looking at the type of the accumulator.

I When I write a for, the compiler cannot assume anything about
the relation between the different iterations of the loop without
doing a complex static analysis.

I Functional programming is intrinsically faster! (I knew it!)

Superscalar

A new fifo (proposal) :

interface Fifo#(a);
method Action enq1(a);
method Action enq2(a);
method a first();
method a second();
method Action deq1(a);
method Action deq2(a);

Actually

interface SupFifo#(numeric type k, numeric type n, type t);
method Bool notFull;
interface Vector#(k,function Action enq(t x)) enqS;
method Bool notEmpty;
interface Vector#(k,function Action deq()) deqS;
interface Vector#(k,function t first) firstS;
method Action clear;

endinterface

Architectural realization

Figure 3:Figure 1

States

Vector#(k, FIFOF#(t)) internalFifos <-
replicateM(mkSizedFIFOF(valueOf(n)));

Ehr#(TAdd#(1,k), Bit#(TLog#(k))) enqueueFifo
<- mkEhr(unpack(0));

Ehr#(TAdd#(1,k), Bit#(TLog#(k))) dequeueFifo
<- mkEhr(unpack(0));

function Action enq(Integer i, t x);
return (action

enqueueFifo[i]<= enqueueFifo[i]+1;
internalFifos[enqueueFifo[i]].enq(x);
endaction);

endfunction

BSC does not like this code

I BSC cannot realize that all the port of the ehr enqueueFifo will
have different value.

enqueueFifo[i]<= enqueueFifo[i]+1;
internalFifos[enqueueFifo[i]].enq(x);

I Indeed : it is a hard problem, it is expected.
I no way to overwrite what bsc does for this scheduling.

So how do we do?

Vector#(k, Ehr#(2,Maybe#(t))) willEnqueue
<- replicateM(mkEhr(tagged Invalid));

Vector#(k, Ehr#(2, Bool)) willDequeue
<- replicateM(mkEhr(False));

function Action enq(Integer i, t x);
return (action

when(
internalFifos[enqueueFifo[0]+fromInteger(i)]

.notFull(),noAction
);

willEnqueue[i][0] <= tagged Valid x;
endaction);

endfunction

And we canonicalize

rule canonicalize;
for (Integer i = 0; i < valueOf(k); i = i+1) begin

case (willEnqueue[i][1]) matches
tagged Invalid : noAction;
tagged Valid .el:

begin
enqueueFifo[i] <= enqueueFifo[0]+fromInteger(i)+1;
internalFifos[enqueueFifo[0]+fromInteger(i)]

.enq(el);
willEnqueue[i][1] <= tagged Invalid;
end

endcase
end
endrule

Superscalarization of the front-end

Fetch1

I From pc we compute how many instructions it can
superscalarize

I (For example we don’t want to enqueue pc+4 if pc+4 is not
predicted by the branch predictor).

I If we have a superscalarity degree of n, we will fetch the biggest
strike of instruction less than n after pc such that all the
instructions are in the same cache line, and the btb indicates
pc+4 for all the instructions of this strike. We stop if we arrive
at the end of a cacheline or that the btb indicate a jump.

I This is required to compute ppc

Fetch2

I We just forward the request to memory at this point we still
have one instruction!

Cache

I The cache is modified to answer a vector of size k of
Maybe#(Instructions) that consists of i<k instructions that are
before the end of the cache line and in a strike.

Fetch3

I We receive several instruction from memory!
I We enqueue them in order, using our superscalar fifo.

Decode

I We have as many decode rules as the degree of superscalarity
(using addRules)

I this rules touch an EHR pc, and epoch in order.
I and then enqueue in the next superscalar fifo in order too.

Correctness

I :) : We pass all the benchmark tests and all the assembly tests
I :(: We fail on linux (apparently spike throw a page fault when

we don’t), we have several hypothesis why but it will take time
to debug. It takes time because every modification takes
roughly 3 hours to test. . .

Performance

I :(: We were first slower!
I :) : After killing instructions in place we have the same

performance (because the backend is not superscalarized yet).

Thank you

Thank you!

	RISCV out-of-order superscalar implementation
	Renaming
	Superscalar

