
Superscalar RISCV processor

Thomas Bourgeat, Jonathan Terry - 6.375

May 9, 2016

Superscalar RISCV processor

RISCV is a free ISA with a growing ecosystem of software and hardware im-
plementations. There is a port of Linux working with MMU, privilege modes,
and all the system tools that makes the design of real hardware especially com-
plex. Hence, RISCV is a good ISA for architectural expeditions with realistic
evaluation of performance.

Superscalar processors exist since early 90s. Contrary to their cousins “scalar”
that execute at most one instruction by cycle, the superscalar processors process
simultaneously two (or more) successive instructions. They exploit a form of
instruction level parallelism.

An other critical architectural idea in modern processor is register renaming.
To consider architectural register as virtual registers that are implemented by
physical registers with a mapping that dynamically change allows the designer
to handle WAR/WAW hazards for free.

This project will start from an out-of-order processor that is missing a renaming
table, and modify it to a partially superscalar out-of-order processor with register
renaming.

The existing Out-of-Order processor.

The existing out-of-order processor is divided in three parts represented in figure.

• the front-end that takes care of fetching and decoding instructions. So
it handles virtual memory, request to caches and TLB, and some branch
prediction.

• the back-end that takes care of renaming the instructions, to execute them
and to commit them.

1

Figure 1: Figure 1

2

• the memory subsystem that performs the memory requests required by
the front-end and the back-end.

We will mainly work on the front-end and on register renaming. Our changes
will also require some changes in the memory subsystem. We discuss that in the
present report.

Register renaming

Our goal was to explore a different way to design renaming tables where the free
list is implicit.

Microarchitecture and interface.

First ArchRegs and PhyRegs represent the sets of architectural and physical
registers involved in the currently handled instruction. Then we define the
following interface.

interface RegRenamingTable;
method PhyRegs get_renaming(ArchRegs r);
method Action claim_renaming(ArchRegs r, SpecBits spec_bits);
// The previous only uses r.dst.
method Action commit;
interface SpeculationUpdate specUpdate;

method Action incorrectSpeculation(SpecTag tag);
method Action correctSpeculation(SpecTag tag);

endinterface

We implement this interface using the following states :

// A commited table, that state the oldest ongoing bindings.
RegFile#(ArchRIndx, PhyRIndx) data <- mkRegFileFull();

// In-flight renaming stack
Vector#(TSub#(NumPhyReg,NumArchReg), Reg#(Bool)) valid <- replicateM(mkReg(False));
Vector#(TSub#(NumPhyReg,NumArchReg), Reg#(PhyRIndx))

stackPhy <-replicateM(mkReg(unpack(0)));
Vector#(TSub#(NumPhyReg,NumArchReg), Reg#(ArchRIndx))

stackArch <- replicateM(mkReg(unpack(0)));
Vector#(TSub#(NumPhyReg,NumArchReg), Reg#(SpecBits))

stackSpecBits <- replicateM(mkReg(unpack(0)));

3

Informally we look first in the in-flight renaming before we look into the table of
commited renamings. So get_renaming implements a look through a Content
Adressable Memory that is the In-flight renaming stack.

There is one subtile issue that is not specified in the interface : we require commit
and incorrect/correctSpeculation to be able to fire simultaneously.

Because of that, and performance issues (fire more rules in the same cycle),
several registers have been replaced by EHR in the final implementation.

Implementation

We first did a naive implementation using static elaboration with for loops. The
compile time was huge, it was impossible to compile even for a stack of size 8.
We then moved to a functional programming style because there were rumour
that it would be more efficient to compile.

These rumours were true, it is a lot faster to replace

for (Integer i = 0; i< 42; i=i+1) begin
foo[i]= f(bar[i]);

end

by

foo = map(f,bar);

After a discussion with Nirav Dave, a plausible hypothesis for why is the following
: when bsc see a for loop, it does not know what kind of state is passed through
every iteration of the loop, there are potentially arbitrarily complex connexions
between each iterations. However when the bsc compiler see a map statement, it
knows that all the fields of this map are independent, it changes a lot in term of
elaboration, it can elaborate each element independently of the others.

So the designer should always use the most specific function when writting
her code, indeed it could get a lot faster because the compiler can apply some
optimization knowing that there are some specific structure in the problem
solved.

The same reason apply why fold is faster than a for loop : the compiler exactly
knows what is the datastructure that is accumulated on and so it can optimize
for that, there are no surprise connexion that could happen at the last iteration
of the loop.

We can remark that some static analysis and heuristic should allow the bluespec
compiler to perform these optimizations automatically.That is one of the few
cases where functional programming is naturally more efficient.

4

Subtility of scheduling in the Bluespec compiler.

At some point we were stuck on a scheduling problem that took lot of times to
solve so we decided to report it here, it could be useful for future work.

We will give here a module that sounds perfectly correct, and is correct with
the description of what the scheduler does in the model given in class. However
it behaves in an unexpected way (in my opinion) when we add synthesize
boundaries.

(This example is a minimalization of the one we were stuck on in our design,
this code is written by Andy Wright)

module example()
Reg#(Bool) foo <- mkReg(False);
Reg#(Bool) bar <- mkReg(False);

rule second
foo <= !bar;

endrule

method first
$display(foo);
$display(bar);

endrule

method third
bar <= !bar;

endmethod
endmodule

This module seems to be perfectly fine, the names of the methods implicitly
describe the order of logical firing that are exported by the compiler.

Without synthesize boundaries everything works fine, however when we add
synthesize boundaries, then something unexpected happens.

Indeed, let’s say that an external module calls in the same rule method first
and third. Then this would be accepted with non modular compilation because
the scheduler would consider this rule valid and this rule would never fire when
rule “second” fire (the compiler would try to find such a logical order). However
with modular compilation it would break everything because the rule would be
accepted, and as the rule second is schedule in between the two methods, this
top level rule and rule “second” would conflict. (With synthesize boundaries the
scheduling within the module is frozen)

The way modular compilation works in Bluespec is that it exports a special
Sequence Before Restricted schedule. Meaning that it accepts to be scheduled

5

before if and only if there is no request of firing the two methods in the same
rule (in which case we could not prevent the rule “second” to fire. . .). So in the
actual bluespec compiler there are at least C, CF, SB, SA, SBR and SAR.

Superscalar

Dependencies and misprediction

First let’s explain what is making superscakar not trivial. When one wants to
process simultaneously two instructions, 2 situations may happen :

• There are absolutely no dependencies between the two instructions and
so the superscalar processor is roughly a two parallel pipeline of a scalar
processor. That is the easy case.

• There are some dependencies and the processor should be aware for it. For
example if we have the two following instructions :

pc : a = a + 2
pc+4: b <- a

The scoreboard - that keeps track of the RAW hazards, needs to inform
the second instruction of the new write on register a.
In this case the superscalar processor cannot be a mere duplication of
the pipeline where the two pipelines would barely communicate with each
other. There is an implicit ordering between those two pipeline. This kind
of dependencies also exists in the front end. For example in decoding there
are redirection going on, we need to make sure that when a redirection
happen, the next instruction is considered as wrong path instruction. (So
that we flip the epoch and that the next instruction that could be fetch in
the same cycle see the flip in the epoch).

Superscalar fifo

The superscalar fifo is the core tool required to do the superscalar processor in a
bluespec style. Indeed that will be the glu that is going on between every stage
of the pipeline. The interface is the following :

interface SupFifo#(numeric type k, numeric type n, type t);
method Bool notFull;
interface Vector#(k,function Action enq(t x)) enqS;
method Bool notEmpty;
interface Vector#(k,function Action deq()) deqS;

6

interface Vector#(k,function t first) firstS;
method Action clear;

endinterface

Internally I satisfy this interface using the following state structure :

Vector#(k, FIFOF#(t)) internalFifos <- replicateM(mkSizedFIFOF(valueOf(n)));

And then we have a datastructure that keeps track of the fifo in which we should
enqueue/dequeue updated this way:

Ehr#(TAdd#(1,k), Bit#(TLog#(k))) enqueueFifo <- mkEhr(unpack(0));
Ehr#(TAdd#(1,k), Bit#(TLog#(k))) dequeueFifo <- mkEhr(unpack(0));

function Action enq(Integer i, t x);
return (action

enqueueFifo[i]<= enqueueFifo[i]+1;
internalFifos[enqueueFifo[i]].enq(x);
endaction);

endfunction

The problem is that the compiler is not able to figure out that there is no conflict
between the different enq functions. Indeed it is not obvious that all the port of
enqueueFifo refers to different numbers. This holds because we have a number
of enq function less or equal than k. (Indeed we always add 1, so we will wrap
around at function k).

One could think that I could just add attributes (like (* conflict-free “foo,bar”
*)). It is not possible to add such attributes on methods that are inside a vector
with the current bluespec compiler. More generally, attributes are not (to my
knowledge) first order objects, they can’t be manipulated in the language like
rules can be using addRules, so when we have a parametric number of methods
we can’t use attributes on this methods.).

I used a workaround - that I believe is quite general - to impose whatever
scheduling constraint I wanted on my Action methods : the methods don’t
directly touch the state of the module, they perform requests modifying EHRs,
where we organize the ports of the EHRs to achieve the scheduling we want
between the rule. At the end of the cycle we have a canonicalize rule that takes
all the request - so all indirectly all the calls to action methods - that the user
wants to perform this cycle, the rule performs them on the state and reset the
status of the EHR to prepare them for the next cycle with new requests. We
need to manually lift the guard up because the guard entirely disappeared with
those “proxy EHRs”. Here is a snippet :

7

Vector#(k, FIFOF#(t)) internalFifos <- replicateM(mkSizedFIFOF(valueOf(n)));
Ehr#(TAdd#(1,k), Bit#(TLog#(k))) enqueueFifo <- mkEhr(unpack(0));
Ehr#(TAdd#(1,k), Bit#(TLog#(k))) dequeueFifo <- mkEhr(unpack(0));
Vector#(k, Ehr#(2,Maybe#(t))) enqueueElement <- replicateM(mkEhr(tagged Invalid));
Vector#(k, Ehr#(2, Bool)) willDequeue <- replicateM(mkEhr(False));

// Those are the future methods
// (as there is a parametric number of them,
// there are still functions at this point)
// we will map them in the vector later

function Action enq(Integer i, t x); // Needs k to be a power of 2
return (action

when(internalFifos[enqueueFifo[0]+fromInteger(i)].notFull(),noAction);
enqueueElement[i][0] <= tagged Valid x;
endaction);

endfunction

function Action deq(Integer i);
return (action

when(internalFifos[dequeueFifo[0]+fromInteger(i)].notEmpty,noAction);
willDequeue[i][0] <= True;
endaction);

endfunction
function t first(Integer i);

return (internalFifos[dequeueFifo[0]+fromInteger(i)].first());
endfunction

rule canonicalize;
for (Integer i = 0; i < valueOf(k); i = i+1) begin

case (enqueueElement[i][1]) matches
tagged Invalid : noAction;
tagged Valid .el:

begin
enqueueFifo[i] <= enqueueFifo[0]+fromInteger(i)+1;
internalFifos[enqueueFifo[0]+fromInteger(i)].enq(el);
enqueueElement[i][1] <= tagged Invalid;
end

endcase
if (willDequeue[i][1]) begin

dequeueFifo[i] <= dequeueFifo[0] + fromInteger(i) + 1;
internalFifos[dequeueFifo[0]+fromInteger(i)].deq;
willDequeue[i][1] <= False;

end
end
endrule

8

Superscalarization of the front end

Here we describe how we superscalarized the fetch1 (tlb request)/fetch2 (tlb
response/mem request)/ fetch3 (memory response)/decode pipeline of the pro-
cessor.

We will only superscalarize when the pc does not refer to the last instruction of
a cacheline. More generally when the degree is more than 2, we superscalarize
as much as we can in a cacheline.

The decode stage is really straightforward as we can just duplicate the combina-
torial circuit and we handle the concurrent access on the epoch using EHRs.

• Fetch 1 computes how many instructions it can superscalarize (For example
we don’t want to enqueue pc+4 if pc+4 is not predicted by the branch
predictor). We send the same request to TLB, knowing that we will be
able to superscalarize only if the instructions are in the same cacheline. So
the translation for pc+4 is pc_phy + 4 for example. (page granularity is
lower than cache line granularity). We take care of ppc that become the
next instruction after the last instruction that will be superscalarized.

• Fetch 2 send the same memory instruction as we just want strikes in the
same cacheline as previously.

• The cache is modified to answer a vector of size k of Maybe#(Instructions)
that consists of i<k instructions that are before the end of the cache line.

• Fetch 3 get back the vector of instructions from the cache, and enqueue
them into the superscalar fifo.

• k decode rules that can fire together (they are ordered) will get from the
superscalar fifo fromFetch3, decode the instruction, modify the state of
the epoch and PC acccordingly, and enqueue into the next superscalar fifo
that goes to register renaming.

Difficulties

There are a couple of difficulties we had to handle :

• The memory are not addressed at the same granularity at different place
of the processor. For example in the cache there are cache lines formed of
double words (64 bits), but the instructions are 32 bits wide. This kind of
thing is a very good source of off-by-one error.

• At the beginning of the frontend, the instructions are somewhat “virtual”
in the sense that one instruction will make several instructions appears in
stage 3. (Basically every instructions between pc and ppc will be silently

9

fetched, but does not exist in the first stages). For this reason there
are some combinatorial computations going on to predict what we will
superscalarize. The logic is the following : if we have a superscalarity
degree of n, we will superscalarize the biggest strike of instruction less than
n after pc such that all the instructions are in the same cache line, and
the btb indicates pc+4 for all the instructions of this strike.

• We had to modify several interface, between the ICache and the fetch
stage, and between the fetch stage and the processor. It sounded scary at
first but it actually went well. We also had to modify the cache slighlty, as
I did not know anything about the way it was written, I was afraid.

Test : correctness and performance.

Set of tests

The test suite consists in the following :

• assembly tests, assembly_fp tests (for floating points)

• Small C benchmarks written in different styles (median, matrix multiplica-
tion, mandelbrot, nqueens, pascal, various sorts, thuemorse, towers, vvadd
. . .).

• the linux kernel

Correctness

During the project we ran our processor on all the assembly tests and C bench-
marks. We made sure that they passed after every small step we did in the
project.

At the end of the project we tried linux. (The reason why we did not try before
is that the synthesis for FPGA takes forever). At first it did not work because
of a minor bug in register file for floating points numbers. We fixed this bug,
know it works!

Performance

At first we benchmarked and evaluated the performance and realized that we
were losing performance! The reason for that is that when we were mispredicting
something we were enqueuing more garbage in the pipeline that took time to
evacuate, as we were just poisoning the instructions. (Our pipeline being slower
at the end than at the beginning)

10

So I changed the redirect rule to kill as much things as possible in place, to
avoid having this kind of problem. I also added an epoch filter earlier in the
front end, to drop wrong path instructions earlier. (I cannot kill in place all the
wrong path instructions because there are requests flying in the TLB and in the
I-cache).

After this change, I see no difference in performance between the partially
superscalar out-of-order and the starting out-of-order. Apparently we won’t see
any benefit in performance before we superscalarize the commit.

11

	Superscalar RISCV processor
	The existing Out-of-Order processor.
	Register renaming
	Microarchitecture and interface.
	Implementation
	Subtility of scheduling in the Bluespec compiler.

	Superscalar
	Dependencies and misprediction
	Superscalar fifo
	Superscalarization of the front end
	Difficulties

	Test : correctness and performance.
	Set of tests
	Correctness
	Performance

