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1 Introduction

In the last few years, the need for small devices with very low computing power has awoken
an interest for lightweight cryptography. Consider for example wireless sensors and the
rapidly growing number of Internet of Things devices, becoming smaller and smarter.

SPECK [1] is a family of lightweight block ciphers that was introduced by the NSA in
2013. It was designed for flexibility and optimized for hardware implementations. This
report describes the design and implementation of a hardware SPECK module for an
FPGA. First, we give a background on the SPECK algorithm itself and we describe its
implementation. We created both a folded design and pipeline design and explored how
changing the number of stages in the pipeline affects the throughput and the FPGA area
used. As block ciphers require inputs of a fixed length, the last part of the report describes
how we used our SPECK implementation to create an encryption tool for arbirary length
messages.

2 SPECK
2.1 Block ciphers

A block cipher is an algorithm that transforms a plaintext into a ciphertext using a symmetric
key. The plaintext and ciphertext have a fixed size, typically referred to as a block. The
cipher consists of two functions, a round function and a key schedule. The ciphertext block
is calculated by T subsequent evaluations of the round function on the plaintext block,
where T is a fixed number of rounds. In each round, the round function uses a different key.
The T round keys are calculated from the original master key by the key schedule.
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Figure 1: Structure of a block cipher of T rounds with round function Ry

2.2 SPECK’s round function

SPECK’s round function only requires modular addition (A), rotations (R) and exclusive
OR (X). The use of these three efficient operations is popular and the schemes that use
them are called ARX ciphers. The round function is shown in Figure 2.

X2i+3 X2i+2
Figure 2: The SPECK Round function

One block of plaintext or ciphertext is 2n bits long with n the word size. As a family
of block ciphers, SPECK allows for different choices for n, ranging from 16 to 64. For each
choice of word size, there are one or two possible key sizes mn. For each pair of parameters
(n,m), the designers have specified the number of rounds to use and the rotation parameters
a and § (See Table 1).



word size n  key words m | block size 2n  key size mn | a« [ # rounds T
16 4 32 64 7T 2 22
24 3 48 72 8 3 22

4 96 23
32 3 64 96 8 3 26
4 128 27
48 2 96 96 8 3 28
3 144 29
64 2 128 128 8 3 32
3 192 33
4 256 34

Table 1: Parameters for SPECK

The round function depicted in Figure 2 is applied T times, starting with z; and xg
respectively the most significant and least significant n bits of a plaintext block.

Ri(z,y) = (S ™z +y) @k, S’y @ (S "z +y) @ k)

Each round transforms (zg;41,Z2;) to (X243, Z2;4+2) with Ry, and after the last round, we
obtain the 2 words (z2r41,z2r) which form the ciphertext block.

The round keys k; are determined from the master key K by a key schedule, which in
the case of SPECK requires exactly the same hardware as the round function. We split the
key K in its m words:

K= (lm72; R lo, kO)

The first round key kg is thus the least significant word of K. Subsequent keys are calculated
as follows:

litm—1=(S"% + ki) Di
kivi = SPki ® livm
This is equivalent to applying the round function with round key i:
(litm—1,kit1) = Ri(li, ki)
For decryption, we must use the inverse of the round function
R (z,y) = (S*aak-SPlzay).SPzay)

and we must invert the order of the round keys.

2.3 Why embedded cryptography?

Why is it useful to create cryptographic hardware instead of using software implementations?
Firstly and most obviously, a dedicated hardware implementation achieves better performance.
More importantly, a separate cryptography processor creates an explicit physical barrier
around sensitive information. Cryptographic software performed in an environment with
other applications running concurrently can leak information through for example timing
variations or the cache. It is better for secret keys to be handled in their own environment
with a private cache. Furthermore, many devices in the Internet of Things have limited
resources or even no generalized core at all, in which case cryptography in hardware is the
only option.



3 High-level design and Test Plan

3.1 Design

Apart from the fact that it uses the same hardware, another important aspect of the key
schedule is that it can be executed “on the fly”. There is no need to generate all round keys
before the start of encryption. During each round of encryption, we can calculate the next
round key in parallel. As a result, we only need to keep the current key k; in memory and
don’t need to remember the complete array of round keys. We do however need a register
for the array .

When many blocks are encrypted with the same key, it might seem unefficient to
recalculate the round keys for every encryption. The alternative however is to store all
round keys (Tn bits) in memory. We prefer only storing the encryption key (mn bits) as
the cost of the round key calculation is negligible: the hardware requirements of the round
function are minimal and as the key schedule is performed parallel to encryption, we don’t
lose any time efliciency.

An essential property of a lightweight cipher is its low-area design. We will therefore
opt for a folded pipeline rather than a linear pipeline. For many lightweight applications,
throughput is not the top priority. Our folded implementation contains the hardware for
two round functions such that we can perform encryption and key schedule in parallel. In
addition, we need a register for the array [ and for the initial key ko, inputFIFO’s for the
plaintext and key and and outputFIFO for the ciphertext.

The implementation uses polymorphism to allow for different choices of parameters and we
chose one specific set for synthesis on the FPGA.
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Figure 3: High level design

3.2 Test Plan and Interaction with Host processor

We have a working C implementation and a set of test vectors to check for correctness from
the original paper [1]. The paper only provides one test for each parameter set, but we can
use the reference implementation to generate more test vectors for the parameter sets that
we use on the actual FPGA.



We use a testing infrastructure similar to that of the Audio Pipeline, using Sce-Mi. A
software test bench in c++ feeds the test vectors to port proxies and creates two outputfiles
(encryption results and decryption results). We use these to compare the received encryptions
to our reference ciphertext and to check that the decryption results match the initial
plaintexts. We wrap our SPECK implementation in the SceMilayer to connect it to the
Sce-Mi ports. There are three types of communiation between the host processor and the
FPGA:

1. Host processor sets key

2. Host processor passes one block of plaintext or ciphertext

3. FPGA passes output to host processor
While there are two separate hardware modules for encryption and decryption, we use the
same in- and outputports for both. Our ‘Device Under Test’” (DUT) combines the two
modules and decides which one to use based on an enumeration flag that is sent with the
inputs.

. inport
inport proxy .
PCle Bridge SPECK
outport proxy Z‘ E outport
reset proxy I-E] reset (DUT)
Testbench SceMiLayer
\_ Host Processor ) FPGA

Figure 4: Test infrastructure with Sce-Mi

4 Microarchitectural Description

On the FPGA, our design consists of two modules. The modules, one for encryption and
one for decryption, have identical interfaces and nearly identical implementations. They
only differ in the definition of the round function (see Figure 3). As their names imply,
the encryption module receives plaintext and transforms it into ciphertext. The decryption
module receives ciphertext and produces plaintext.

4.1 Interface

SPECK can have a variable word size n, key size mn and number of rounds used for
encryption 7". The parameters (n,m,T’) are used as numeric types for the EncryptDecrypt
interface, which is implemented by both modules. The interface has three methods:

1. an Action method setKey() for setting the encryption/decryption key
2. an Action method inputMessage() for receiving a block of plaintext or ciphertext
3. an ActionValue method getResult (), returning the encryption/decryption result

These methods were chosen such that a user must only set his key once, when encrypting
or decrypting multiple blocks.



4.2 Implementation
4.2.1 Folded design

Each module has one rule implementing the folded pipeline shown in Figure 3. In every
cycle, the round function is executed twice (once for the plaintext/ciphertext block and once
for the keys) and the round indicator ¢ is incremented. In the first round, when i = 0, the
plaintext/ciphertext is taken from the inputFIFO instead of a register. In the last round,
when ¢ = T — 1, the result is put in the outputFIFO, the inputFIFO is dequeued, the round
indicator ¢ is reset to 0 and the round key k; is reset to k.

In order to avoid conflicts with the setKey() method (both are writing to the key
registers k;), we introduce mutually exclusive guards on the two, using the state of the
inputFIFO. It is only logical, that the key should only be allowed to changed when the
inputFIFO is empty.

The setKey() method receives a key or mn bits or m words. The last three words are
stored in registervector {. The round key is initialized with the first word kg, which is also
stored in a separate register for reuse of the key.

The vector [ is stored in a vector of registers rather than a register of a vector. This
vector is relatively long but is only edited at one index each cycle and at m — 1 entries in
the setKey () method. It is therefore more efficient to implement it with a separate register
for each entry.

The inputMessage () and getResult () methods are straightforward. They respectively
receive a block to enqueue into the inputFIFO or dequeue and return the first element of
the outputFIFO. They don’t conflict with any other method or rule.

4.2.2 Unfolding

We want to explore how introducing parallelism with an unfolded design can increase
throughput of the encryption/decryption module and how much we have to pay for this
in area.

We thus introduce multiple stages, each with two copies of the round function (one for the
key schedule and one for the encryption) and registers keeping the round index, the round
key and the intermediate result {z2;11,x2;}. We still keep only one copy of the vector [
since every stage can write to a different entry.



==y

Round |
Function

| —

PlaintextFIFO

——

Round [ Round
LLL | Function ‘)E'_> Function —‘
. CiphertextFIFO

Round
Function

~—————

3>
>

Figure 5: Unfolded pipeline

In the first stage, we need to determine whether to start a new encryption, or to continue

with one that is underway. This is indicated by the round of this stage. When it is 0, we
must get a new input from the inputFIFO. If there is no input available, we set the round of
the next stage to 0. We could use the Maybe type to indicate the validity of a stage input,
but since we already have the registers keeping round numbers, we don’t need it. A round
equal to zero in any stage other than the first stage means that there is nothing to do but
passing the round number 0 on to the next stage.
In any stage, a nonzero round number indicates a valid block in the register before the stage.
In that case, the stage performs the round functions and puts the results in the registers
before the next stage (modulo the number of stages of course). When a round register
reaches the last round number (7" — 1), the result is enqueued into the outputFIFO and the
next round number is set to 0 instead. This means that computations can start on the next
block in the inputFIFO.

5 Synthesis and evaluation

5.1 Folded design

We synthesized for the parameterset (n,m) = (24,4). With a clock period of 5ns, we obtain
a critical path with worst negative slack equal to 0.52ns. Both the decrypt and encrypt
module require a total of 940 flip-flops. There are 608 LUT’s for the decrypt module and
622 for encryption.

To measure the throughput, we implemented a separate module that passes a fixed
number of blocks to the encryption module. As the inputs and outputs have identical
formats, there is no need to hardcode a long vector of input plaintexts. The module stores
the outputs of the module in a fifo, so they can be feeded back. When the fifo is empty, a
random input is chosen such that the encryption module receives something every cycle. It
takes 23 million clock cycles to encrypt 1 million inputs this way. At a clock frequency of
200 MHz, this is equivalent to a runtime of 0.115s. As each input block consists of n = 48
bits in our implementation, our module thus achieves a throughput of around 417Mbps.



5.2 Design exploration

We also synthesized the pipeline with 2 to 5 stages. Table 2 shows the resulting area and
throughput. Figure 6 shows a graphical comparison of the results.

# stages | # flip-flops # LUT’s | Throughput (Gbps)
1 940 622 0.417
2 1036 1548 0.8
3 1132 1994 1.2
4 1288 2951 1.6
5 1324 3571 1.92

Table 2: Area vs Throughput trade off for unfolding the pipeline
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Figure 6: Area versus throughput for unfolding the pipeline

Unfolding once gives an 92% improvement of throughput at the cost of an approximate
150% increase in the number of LUT’s. This is quite a steep price. As we unfold more, the
gain in both throughput and price of area decreases. The choice of number of stages to use
will depend on the required throughput of the application and the availble area. We will
assume we want to minimize hardware area (for some internet of things sensor or device)
and continue with the unfolded design.

6 An encryption tool for practical use

6.1 Mode of operation

For practical use of the implementation, we need to encapsulate the encryption module in
a block cipher mode of operation for cryptography. Our module can encrypt blocks of 2n



bits. In the very likely case that one wants to encrypt a message that is longer than that,
it is not considered safe to simply split the message into blocks of 2n bits and put them
through the encryption module independently. This mode is known as Electronic Codebook
(ECB) mode (see Figure 7).

Plaintext Plaintext Plaintext
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block cipher block cipher block cipher
Key encryption Key encryption Key encryption
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Electronic Codebook (ECB) mode encryption
Figure 7: Electronic Codebook (ECB) mode of encryption

Figure 8 demonstrates why ECB is not a good mode of encryption.

(b) What encryption looks (c) What encryption should
like with ECB look like

(a) Message

Figure 8: Why ECB is not a suitable mode of encryption

Instead, we implement the Output Feedback (OFB) mode of encryption, shown in
Figure 9.
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Figure 9: Output Feedback (OFB) mode of encryption

This mode of operation is not parallelizable, but as we still want to keep the area of our
design as small as possible, this is not considered a problem. A very convenient advantage
of the output feedback mode is that no decryption module is needed to recover the message.
Since the mode’s approach is to use the encryption module to generate a stream of “random”
keys which are XORed with the plaintexts, we can reuse the encryption module when we
want to invert this XOR operation. As a result, the hardware for encryption and decryption
is identical (see figure 9).

6.2 Interface

The OperationMode interface is very similar to the EncryptDecrypt interface. It also takes
the numeric types (n,m,T) and has the following three methods:

1. an Action method setKeyIV() for setting the encryption key and initialization vector
2. an Action method inputMessage() for receiving a block of plaintext or ciphertext
3. an ActionValue method getResult (), returning the encryption/decryption result

The only difference with the EncryptDecrypt interface is that apart from a key, we must
also be able to set an IV. Finally, we need one more method to explicitly reset the module.
As Figure 9 shows, once an IV is set, it will be encrypted endlessly. We thus also provide an
Action method reset () to allow the module to be used with a new IV. This is for example
necessary when one wants to start decrypting after encryption.

10



6.3 Implementation
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Figure 10: Design of the OFB module

Figure 10 shows our folded version of Figure 9. The SetKeyIV() method of the OperationMode
interface simply passes the key to the SetKey() method of the encryption module and
introduces the IV as a plaintext block.

There is one rule responsible for getting the encryption result from the encryption
module, xoring it with an input, resubmitting it to the encryption module and passing the
result of the xor operation to the outputFIFO. The rule is made mutually exclusive with the
SetKeyIV() method by means of a Boolean flag started. The SetKeyIV() method, which
can only be used when started is False, changes the flag to True. The reset() method
sets the flag to False. In that case, a second rule empties the resultqueue of the encryption
module such that remaining encryptions of the IV cannot be mixed with those of the next I'V.

The inputMessage () and getResult () methods are again straightforward. They respectively
enqueue inputs into the inputFIFO or dequeue and return the first element of the outputFIFO.

6.4 Synthesis

Also for the OFB implementation, we use a clock period of 5ns, resulting in a worst slack
of 0.377ns. The critical path is thus 4.623ns. The overhead of the OFB module causes an
increase of 0.143ns.

The implementation requires 782 LUT’s and 1137 flip-flops and the result can encrypt
messages at a throughput of 400 Mbps. As expected, this throughtput is very close to the
throughput of the 1-stage SPECK module. With our software (C) implementation of speck
in OFB mode, encrypting 1 million messages takes 0.2 seconds, which is equivalent to a
throughput of only 240Mbps.

6.5 Test and use environment

The SceMiLayer and testbench for this module are very similar to the original ones, the only
difference being that the testbench must be able to send an IV with the key. Furthermore,
as the OFB mode is meant to encrypt/decrypt a series of blocks belonging to one message,
we also change the input to our testbench from a file of 2n-bit hexadecimal blocks to a
file containing a text message. The testbench encodes the message to ASCII hexadecimal
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format and splits it into 2n-bit blocks itself before sending them to the FPGA. Similarly, the
FPGA outputs are reconverted to readable text format, though an encrypted message will
of course look like gibberish. The testbench then resets the DUT and uses this encrypted
file as input for the decryption (or equivalently, another encryption with the same key and
IV). The message resulting from decryption perfectly matches the initial message.

We also designed a GUI for easier use of our design. This GUI acts a front-end, receiving
and sending data between the user and the testbench. It allows the user to set the key,
initialization vector and message to be encrypted or decrypted. It also provides a live
update post encryption/decryption. One key reason for creating a GUI is that it makes our
design more attractive to a larger population. Without the GUI, users of our systems would
be required to manually enter the key and intialization vector for SPECK as well as the
text to be encrypted or decrypted. This requires intimate knowledge of our system. This
GUI removes this hindrance from the user. It is shown in Figure 11. Note that users can
manually enter key, IV and message or opt to use the default values. The resulting plaintext
or ciphertext is also displayed and can easily be transferred to the input field for further
use.

e0ce X| GUI for Speck
Welcome to Speck!

Enter key: 020100 020908 121110 121618
Enter IV:  [735e10 b6445d

[Type your message here =

Enter message: Result:

Encrypt/Decrypt

Figure 11: Screenshot of GUI.

6.6 Implementation Evaluation

As with any project, we faced challenges as we designed our system. The Bluespec code
proved to be one of the simpler components and we experienced little to no problems
with the Bluesim unit tests. As the original paper on Speck released C code as well,
example inputs and outputs were easy to generate. The majority of our issues came with
debugging the SceMi layer and the testbench. Also encoding/decoding between ascii text
and hexadecimal format in a way that ensures decryption exactly matches the original input
was not straightforward.

Overall, we did not make any significant changes from our original microarchitecture.
From the beginning, we had decided on having two modules- one for encryption and one for
decryption. The largest change we made in those was replacing the register of the vector [
with a vector of registers, as this significantly reduced the utilization. The implementation of
a mode of operation could be considered a change in design, as this was not part of our initial
plan. However, this decision still did not require any changes in our initial implementations

12



as it is a layer that operates on top of it.

We did not experience any problems moving our design from simulation to the FPGA.
We ended up with a total of 233 lines of Bluespec code. Our design has a few key components
that we expand upon below:

e Speck (157 lines): Core of the code that includes both an encryption and decryption
module.
note: The number of lines is thus approzimately double of what is used in our final
design (only encryption)

e Speck types (34 lines): This file merely defines our parameters (N, M, T) and the
used interfaces.

e OFB (43 lines): Module that implements th mode of operation, using the encryption
module of Speck

e Unfolding (185 lines): The unfolded implementation of the Speck encryption and
decryption.
note: this implementation was done for exploration purposes; it is not part of our
final design but we show the line count here solely for comparative purposes. It also
contains both encryption and decryption implementation.

We didn’t need any existing IP blocks. The majority of our system requires only basic
Bluespec blocks. For the SceMiLayer and Testbench, we did start from the already available
implementations from the AudioPipeline labs.

Overall, we met all our initial project goals. We entered this project aiming to implement
Speck, which was designed for software, on an FPGA. We were able to create an efficient
FPGA implementation and run Speck as intended. Moreover, we were able to extend this
implementation with a mode of operation, which was not initially our goal. This inclusion
made the design more useable as it could originally only encrypt blocks of limited length.

7 Conclusion

The contribution of this report is twofold. On the one hand, we designed and implemented
Bluespec modules for the SPECK encryption algorithm. We explored a completely folded
design as well as a pipeline with 2 to 5 stages and compared their merit on the basis of area
and throughput. On the other hand, we implemented an encryption module for texts of
any length, using the OFB mode of encryption. We also created a user interface for sending
encryption requests to the FPGA, such that our design is easily useable. Our final design
was able to achieve a very good throughput compared to that in software.

Our complete code is available at github.com/LaurenDM //speck.
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