
6.375 Final Report: Hardware Acceleration for Power Intelligent

Wearable Navigation Systems

Andre Aboulian, Ishwarya Ananthabhotla

May 11, 2016

1 Project Objective

In today’s world, wearable electronics and devices are becoming of interest in multiple contexts– from the
perspective of aesthetics, health and medical monitoring, assistive devices, and connectivity on-the-go. While
technology has thus far been focused on computational productivity, feature expansion, and small form-factor,
absorption of such technology by the consumer market is strongly limited by excessive power consumption.
As such, it is in the best interest of a hardware designer to consider the inclusion of dedicated hardware
whenever possible, but also simple algorithms for intelligent power delivery that can be concurrently managed
by this hardware.

This project seeks to explore this concept as a part of a system designed to be a wearable navigation
device for visually-impaired individuals. The MTL Energy Efficient Circuits Group has developed an initial
prototype of such a device that employs a Time of Flight (ToF) camera to capture depth data about the
environment and process it to identify the presence of obstacles within a user’s field-of-view, finally providing
haptic feedback about this information. However, a power expenditure upwards of 15 Watts, resulting from
large frame dimensionality, active illumination panels, and statically high frame rates, presents a sufficient
barrier to usability and ”wearability” throughout the day. In order to work towards a next generation
prototype that is more power-friendly for such an application, the overarching goals of this final project
are twofold– to work with the next generation ToF camera (that is smaller in dimensions) to (1) reproduce
critical and computationally features from the old system (namely, generating a point cloud) and improve
them by implementing them in hardware, and (2) implement a set of dynamic power scaling algorithms for
the aforementioned power hungry features, also in hardware. Succinctly stated, our in-scope objectives for
this project are as follows:

• Demonstrate that the depth data to point cloud data conversion can be implemented in Bluespec for
hardware

• Demonstrate that three power scaling algorithms can be implemented in hardware, without visibly
(qualitatively) altering the point cloud

• Demonstrate a full system with a simulated feedback loop using pre-captured camera data, implemented
on the Zynq Mini-ITX 100 Board

• Understand the benefits of implementing the point cloud algorithm and the power scaling algorithms
in hardware, in terms of space, speed or power

A detailed explanation of the camera specifications and of the power scaling algorithms can be found in
the section below.

2 Background

2.1 Time of Flight Camera

The ToF camera used in this system is Texas Instrument’s OPT8320 chipset, with a frame dimension of 80x60
(QQQVGA) and a range of approximately 1 meter given the default, short-range illumination configuration

1

for this proof-of-concept. The ToF camera operates by actively modulating infrared illumination at a known
frequency and capturing the light that is returned to a sensor array after it has been reflected from various
obstacles in the environment. The sensor array calculates the phase difference between the reflected light
and the pulsed light, and uses this quantity in conjunction with the known unambiguous range (which is a
function of the modulation frequency) to extrapolate the distance to the object. This process is undertaken
for each pixel in the sensor array, so each frame returned by the ToF camera is a 80 x 60 depth map of
the scene in its field of view. The maximum internal frame rate of this chipset is 4000fps, and the default
configuration has a peak power expenditure of 2 Watts. However, typical applications of this device require
custom illumination panels tailored for larger distances, which are likely to consume much more power.

In order to provide some context for the way the power consumption of the chipset changes as a function
of frame rate, illumination, and integration, sample measurements for the default configuration can be found
in the plots in Figure 1 and Figure 2.

Figure 1: OPT8320 main board power consumption as a function of frame rate, at illumination panel current
of 30mA. The blue plot shows a fixed integration duty cycle of 20 percent, where the orange plot displays
a fixed ratio equal to the integration duty cycle over frame rate, set here at 0.01. For most applications,
integration is required to increase with the frame rate for best results.

2.2 Algorithms

Four sets of algorithms – Point Cloud Generation, Scene Statistics, Scene Differencing, and Step Rate
Detection – each as a separate Bluespec module, have been implemented as a part of this project.

2.2.1 Point Cloud Generation

The first is the transformation of the two-dimensional depth map from each camera frame into a 3-D point
cloud. The points correspond to coordinates in the real world. The generation of a point cloud is critical to
any guidance and mapping application, and requires efficient computation because it needs to be performed
pixel-by-pixel and frame-by-frame. The depth map to point cloud conversation can be thought of as a
geometric transformation derived from the pinhole camera model, shown in Figure ?? below:

While the step-by-step derivation will be bypassed here, the final transform is concluded to be:

2

Figure 2: OPT8320 main board power consumption as a function of illumination, at frame rate of 30 fps
and 20 percent integration.

Figure 3: This figure shows the pinhole camera model that was used in the pointcloud transformation for
this study. We find point P, the point in the real world, point Q, the point on the image plane, and depth
ray D that is read by the imager.

3

XP =

[
c

2fmod
· φ(u, v)

2π

]
·
√

f

1 + u2 + v2

YP =

[
c

2fmod
· φ(u, v)

2π

]
·

√
1− f

f + u2 + v2
· u√

u2 + v2

ZP =

[
c

2fmod
· φ(u, v)

2π

]
·

√
1− f

f + u2 + v2
· v√

u2 + v2

u = (x− Width

2
) · tan(

FOVx/2

Width/2
)

v = (y − Height

2
) · tan(

FOVy/2

Height/2
)

(1)

where FOVx and FOVy are the horizontal and vertical fields of view respectively, Width is the width of
the frame in pixels, Height is the height of the frame in pixels, and x and y are the indices of the Point Q
as read from the ToF sensor array.

2.2.2 Scene Differencing

The ”Scene Differencing” algorithm, the first of the three power scaling algorithms, is essential toward
determining how quickly the environment is changing around the user. Each successive frame is compared to
the previous one to ascertain whether they are roughly the same. The similar frame is said to be ”skipped”,
meaning it provides little new data as compared to the previous frame.

This algorithm performs a gaussian convolution across each depth frame as a low pass filter, to filter out
noise from the comparison. The effect of the filter is visible in Figure 4. A pixel-by-pixel difference is taken
between the current and previous frames, the sum of which is the total difference in the frame. If this value
is below a particular threshold gskip, then the similar frame is marked ”skipped”. The entire comparison is
expressed computationally in Equation 2.

SkipFrame :=
∑
|gaussian(Phasex,y,i)− gaussian(Phasex,y,i−1)| < gskip (2)

Figure 4: A frame of Phase data (left) transformed with a Gaussian kernel (right).

2.2.3 Step Rate

An additional algorithm, this time to characterize the motion of the user relative to the environment, is
implemented with the use of data from an Inertial Measurement Unit (IMU) that would be integrated into
a new system (and existed on the previous system). Periodic peaks in vertical acceleration are detected by
passing temporal data through an FFT block and peak finding in order to determine the ”Step Rate” at
which a user was moving. This step rate algorithm would be used in conjunction with the scene differencing
algorithm to scale the ToF Camera’s frame rate dynamically.

4

2.2.4 Scene Statistics

The final algorithm implemented in this system is a ”Scene Statistics” algorithm to be able to dynamically
scale the base illumination voltage required by the LED panel. For the illumination configuration present in
this system, three different values of illumination can be chosen for the LED panel. An intentional metric
that favors the largest, nearest objects in determining the minimally sufficient illumination for a given frame
is imposed. Given the confidence and phase that is assigned to each pixel in each frame, the following
procedure is followed to compute a change in illumination value (increase by one step, decrease by one step,
or remain the same):

1. Compute the histogram Hp for all 4800 pixels, assigning bins with a resolution of 0.15m per bin

2. Impose confidence threshold function upon the histogram to obtain tc(d), where d is distance

3. Select the N largest bins that comprise of M percent of the total pixels in the scene

4. Compute the direction of change in illumination as:

vp(n) = tc(n)
Hp(n)

≤ 0.25

Vp =
∑

N vp(n)

vd(n) = tc(n)
Hp(n)

≥ 0.75

Vd =
∑

N vd(n)

∆I = sign(w1Vp + w2Vd)

where vp and vd are positive and negative votes respectively assigned to a single bin, Vd and Vp
are the frame’s collective positive and negative votes, and w1 and w2 are tunable weights that can be
set if, for example, a low-power mode values power reduction assignments more than power increase
modes, or vice versa.

5. Return ∆I

Each of these algorithms were first implemented in a Python software simulation framework as a reference
for the hardware implementation. The microarchitecture and Bluespec implementation details for each of
the algorithms can be found in the sections below.

3 High Level Design and Test Plan

The diagram in Figure 5 presents a high-level abstraction of our system. As shown, each of the four
algorithms detailed above are translated into an independent Bluespec module. Each module was developed
separately with a corresponding Bluespec test bench that was used to verify the output against our software
simulation before synthesis and full system integration. The system is completed by a software piece, which
is responsible for delivering phase and confidence data from the camera to the four modules and aggregating
their outputs into a controller that updates the frame rate and illumination parameters for the next set of
frames to be delivered. This software-to-hardware interface was written using Connectal.

The implementation of this system was done on a Zynq Mini-ITX100 board, a platform containing an
FPGA for the hardware end and an ARM core to serve as the host for the software end. Test infrastructure
was implemented to allow the ARM core to load pre-captured camera frames into a frame server, ”deliver”
them to the Bluespec architecture to emulate the behavior of a live camera based on the feedback from the
modules, and record its behavior for offline analysis. This allowed us to verify the performance of the entire
system.

Details regarding the architectures of individual modules and of the software camera controller interface,
as well as a presentation of test results, are described in the sections below.

5

Figure 5: High level diagram of the system.

4 Microarchitecture

Each of our four algorithms required rearchitecting to translate them from their software counterparts into
the hardware domain. Storage, recursion, indexing, and arithmetic influenced the design of our hardware
modules. The overall hardware system in Figure 4 shows the interactions between modules and input/output
queues between components. Each of the four blocks is elaborated in this section.

4.1 Pointcloud

A point cloud coordinate can be computed from each phase pixel without knowledge of the overall frame.
For this reason, the interfaces to the module consumes one phase pixel for each coordinate that is produced.
A complete frame is computed after 4800 cycles.

The bulk of the point cloud algorithm computes a normalized spatial coordinate corresponding to each
pixel position. Since this depends only on the location of the input pixel and not its value, the computation
is redundant across frames. The location of each pixel is taken relative to the center of the pixel plane, so
the unsigned result is identical in each quadrant of the plane due to radial symmetry. To leverage these
properties, these normalized coordinates are pre-computed for only a single quadrant of the pixel plane.
These values are loaded into the BRAM, and a sign-change is applied after retrieval relative to the quadrant
accessed.

Phase pixels are input in column-major order throughout the system. The Fetch stage relies on this
specification to iterate over all X,Y locations using its internal Pixel Counter. This pixel location is mapped
to a quadrant-insensitive index ”PCIndex” used to query the corresponding coordinate from BRAM. The
pre-computed coordinates are normalized, for simplicity, for a Phase magnitude of 1.0.

The Scale block dequeues an input Phase and a normalized Coordinate at once. Note that the output of
the BRAM has a built-in FIFO. The Phase and Coordinate pair maintain synchrony purely by the order in
which they are expected. The Scale block simply scales the normalized Coordinate by the input Phase to

6

Type Purpose Bit Equivalent
Phase single phase pixel UInt#(12)
Confidence single confidence pixel UInt#(12)
MotionSample single IMU point FixedPoint#(16,16)
StepRate computer step rate FixedPoint#(16,16)
SkipFrame current frame similar to previous Boolean
Illumination illumination power level UInt#(2)
Coordinate 3D point cloud coordinate Vector#(3, FixedPoint#(8,16))

Figure 6: Microarchitecture overview of the system. Data types are indicated in the table.

Figure 7: Microarchitecture blocks within the ”Point Cloud” module.

7

obtain the point cloud Coordinate, queuing this output for later consumption.

4.2 Scene Statistics

Type Purpose Bit Equivalent
N number of Phase bins CONST 30
P number of Confidence bins CONST 30

Figure 8: Microarchitecture blocks within the ”Scene Statistics” module.

The microarchitecture of the Scene Statistics module is shown in Fig. 8 above. As shown, phase data is
input pixel-by-pixel into the histogram block, and assigned to a bin after a conversion from phase to metric
distance. The histogram is contained in a vector of registers. Additionally, the confidence value assigned to
each pixel is compared to the confidence threshold function, and stored in a threshold vector of registers if
the result is positive. After all 4800 pixels in a frame have been received and processed in this manner, the
histogram and threshold vectors are fed to the Search block so that the largest bin could be identified. The
value in the largest bin is then passed to the Vote block in order to assign an upvote or a downvote to that
bin, and checked to verify the percentage of total pixels that have been assigned votes so far for this frame.
If the minimum number of pixels needed to be processed, set by the check threshold, had already been in
bins that were assigned votes, the sum of the votes would be written to the output FIFO. Otherwise, the
control flow of the module would return to the Search block to identify the next largest histogram bin.

In terms of design, note that FIFO’s are placed at the input and output of the entire Scene Statistics
block, and between the histogram and the remainder of the processing blocks. However, the Search and Vote
blocks remain rigid without consequence. All post-histogram operations take no more than a few hundred
cycles regardless of the pixel distribution, whereas the histogram operation alone requires 4800 cycles.

4.3 Scene Differencing

The scene differencing module consumes Phase pixel values and produces a SkipFrame boolean after an
entire frame has been processed. The SkipFrame flag is set if the current frame was roughly similar to the
previous one. Note that no output is produced after the first frame, since the concept of a previous frame is
not yet valid.

The Phase pixels arrive in column-major order, so data travels through the pipeline in Figure 9 as columns
of height H. The Chunker assembles individual Phase pixels into such columns. The Rolling Window
maintains enough columns to perform the convolution with a K-width kernel. The window consumes a new
Phase column once the existing one has been processed, discarding the oldest column.

The Convolve block computes a single Gaussian each cycle, using the phase values within the window.
The Gaussian is always centered on the middle Kth column and moves down the column each cycle, as
depicted in Figure 10. When surrounding pixels are out of bounds, their value is assumed to be zero. The
view of the Rolling Window as a simply a grid of registers is oversimplified, in that the nested vectors have
validity flags associated with them. This is necessary for the beginning and end of each frame, so that these
invalid columns are considered ”out of bounds” rather than affected by the beginning of the next frame. The
results of the Gaussians are stored in the Gaussian Column, which is queued for the next stage once it has
been completely populated.

Notice that in the microarchitecture diagram (Figure 9), the Chunker requests the previous frame’s
corresponding Gaussian column from the BRAM. So once the current frame’s Gaussian column is later

8

Type Purpose Bit Equivalent
H number of pixels in column CONST 80
K convolution width CONST 3
Gaussian gaussian pixel value UInt#(16)
Delta absolute difference in pixel values UInt#(16)

Figure 9: Microarchitecture blocks within the ”Scene Differencing” module.

Figure 10: The Rolling Window for a K-width kernel is comprised of a series of Phase registers, represented
as individual cells. The Gaussian kernel is depicted as densities (Black = 1.0) and superimposed on the
convolved Phase values. The kernel is always centered around the middle column; here, the gaussian of
y = 4 is being computed.

9

enqueued, the BRAM’s built-in FIFO is ready to dequeue the corresponding column from the previous
frame. The Compare block then dequeues the same Gaussian column from the current and previous frames
together, and computes the sum of the differences between pixel pairs as ”Delta”. Simultaneously, the Store
block writes back the new Gaussian column to memory. The Accumulate block adds the deltas for each
column in the frame and outputs a positive SkipFrame flag if the sum is less than a calibrated threshold.

4.4 Step Rate

Type Purpose Bit Equivalent
MotionSample single point of accelerometer data in time domain FixedPoint#(16,16)
ComplexSample single point in frequency domain Complex#(FixedPoint#(16,16))
StepRate computer rate of user stepping FixedPoint#(8,16)
P number of new motion samples taken per second CONST 64
W number of seconds spanned by the FFT window CONST 2

Figure 11: Microarchitecture blocks within the ”Step Rate” module.

The microarchitecture of the Step Rate module is shown in Fig. 11 above. The module operates by
receiving as input FixedPoint accelerometer measurements from external MPU9250 data taken at a sample
rate of 20 Hz. The data stream is chunked into frames of 128 data points, which allows each frame to contain
approximately 6 seconds worth of step information. These frames are then passed through a Chunker block
which delivers subsequent frames with 50 percent overlap to the previously delivered frame. These frames
are then passed through a custom super-folded, pipelined FFT implementation and then through a Cordic
block in order to obtain a magnitude representation of the data. Lastly, the magnitude spectrum of each
frame is passed to the Find Peak block, which computes the step rate associated with the frame and returns
the data to ARM processor’s camera control module.

A high level architecture of the Superfolded FFT can be found in Fig. 12. A radix-2, Pease transform
based implementation is used. Note that the implementation uses only single Butterfly node to minimize logic
and area utilization. The original circular implementation that we developed as part of the class required
more DSPs than our original evaluation platform, the Zynq Zedboard, had to offer, which motivated the
move to a superfolded implementation.

4.5 Camera Controller

The software camera controller is responsible for delivering the camera frames to the four bluespec blocks and
computing a new set of control parameters for the camera based on the outputs of the modules. Since this
project used Connectal to bridge the software and hardware components, the camera controller was written
in C++ for the ARM core located on the Mini-ITX100. For the illumination delta outputs, a simple moving
average across three seconds (the number of frames would vary based on the frame rate) was maintained and
assigned as the new illumination value. For the skip frame flags that resulted from the scene differencing
module and the step rate value that resulted from the step rate module, the following simple proportional
controller was used.

FrameRaten = FrameRaten−1 + (k + q · StepRate)(Desired− 1

N

∑
SkipRaten−1) (3)

where k is the proportional gain term, and q is a tuning factor regarding the degree to which the gain
can be perturbed by the step rate. Intuitively, we seek to accelerate the change in step rate based on the
presence or lack of rapid user motion.

10

Figure 12: High level diagram of the superfolded circular FFT module used to compute the step rate in the
IMU module.

While ultimately we would have liked to have been able to compile the ToF Camera SDK for the ARM
core for real time delivery of frames and feedback for parameter updates, there were several hurdles to
successful compilation of the software. After discussion with our mentor, it was decided that the camera
data would instead be simulated by a ”frame buffer”that would load phase and confidence data from a file
pre-captured at a high frame rate and at all stages of illumination, and ”deliver” the next appropriate frame
based on the feedback received from the Bluespec modules.

5 Implementation Evaluation

5.1 Synthesis Results

The system described above was synthesized for the Mini-ITX100 board, and select results regarding critical
timing and memory allocation are presented in this section.

The critical path length of the entire system is 17ns, which is a result of the FFT block within the
Step Rate module. With this timing constraint, the system can be clocked at 60Mhz. A summary of the
throughout of each module operating at this clock frequency compared with the constraint imposed by the
frequency of input frame delivery to that module is shown in the table below.

Module Throughput (Samples per Second) Frame Delivery Constraint
Scene Statistics 12,000 4Khz

Step Rate (IMU) 100,000 20Hz
Scene Differencing 12,500 4Khz

Point Cloud 12,500 4Khz

As can be seen, even at the maximum internal ToF camera frame rate of 4000fps, the throughput of each
of the four modules in not constrained and there is no latency. However, for the modules that operate on a
pixel-by-pixel basis such as the point cloud module, this presents a limit to scalability without requiring a
redesign for larger frame dimensions.

Additionally, statistics regarding the utility of resources, such as memory, BRAM, LUTs, and DSPs, are
given in the table below:

11

Resource Amount/ Number Used Percentage
Slice LUTs 72301 26.06%

Slice Registers 60028 10.82%
Block RAM Tiles 24 3.2%

DSPs 29 1.44%

The utility statistics show that the Mini-ITX100 platform could easily accommodate expanded versions of
each of these modules or additional features to the system, given that approximately a third of its maximum
capacity has been reached with our current synthesis. For example, if the throughput considerations can be
addressed, this FPGA platform would be capable of handling input data from a QVGA ToF camera (320 x
240 pixels instead of 80 x 60) as well.

5.2 System Response

In addition to testing each of the modules individually against known input and output pairs, the system’s
behavior was tested hollistically. A few strategic inputs were recorded, each of which targeted one subsystem
at a time.

Figure 13: System response to intervals of camera motion and stillness.

In the first test case, the camera alternates between being held still and being shaken rapidly at 5 second
intervals for a total of approximately 25 seconds. The frame rate response is plotted against the detected
skipped frames in Figure 13, confirming the expected results. Dense periods of vertical lines indicates that
many frames were skipped. The scene is changing slower than the camera is sampling, and so the frame rate
decreases to compensate for this condition. The camera controller works to maintain a constant frame rate.
So when the density of the lines decreases – which indicates the scene is moving faster than the camera is
sampling – the frame rate increases to compensate for the added motion.

The same camera input data used in the previous test case is coupled with a periodic input from the IMU,
emulating a constant step rate. Recall that the camera controller compensates the frame rate proportional
to the number of skipped frames, and the step rate influences the gain of this feedback loop. We can clearly
observe in Figure 14 that when a non-zero step rate is imposed, the results are similar to the previous result
but the response is much faster.

In the third test case, the camera begins close to a blank wall and moves away in constant-distance
increments at 5 seconds intervals. The camera distance input is plotted against the illumination response
in Figure 15. The illumination generally varies as expected, increasing brightness as the distance to the
subject increases. Notice the glitch at time step t = 0 when the camera begins with full illumination but

12

Figure 14: System response to the same intervals of camera motion and stillness. A constant step rate is
emulated on the IMU, which increases the gain of frame rate responses.

Figure 15: The illumination responds to the changing distance to the subject.

13

compensates downward by the next time step due to the close proximity. Glitches at t = 11 and t = 13 are
suspected to be due to noise in the distance transition.

5.3 Challenges

After the algorithms and architectures had been designed, there were several implementation challenges that
we encountered that forced us to consider major redesigns or caused unexpected delays in our timeline.
The earliest discovery was that the class’s circular pipeline FFT implementation exceeded the number of
DSPs provided by the Zedboard (which was the platform we originally intended to work on) for a 128 point
operation. Given that we required an FFT that large for the application, a superfolded FFT that used only
a single Butterfly node was implemented as a replacement.

Additionally, performing arithmetic in hardware proved to be a challenge in a few different instances.
The geometric transform required to convert a phase pixel to X, Y, and Z coordinates involved trigonometric
operations, square roots, etc, and we had expected to have been able to perform these operations in Bluespec
using libraries or Xilinx cores. However, the conversion factors had to instead be manually generated in stored
in lookup tables, which forced us to incorporate a BRAM in the point cloud design.

Similarly, the scene statistics module relied on many division operations to histogram quickly (instead
of a searching and sorting mechanism). When the synthesis for this module was first performed, it was
discovered that the division operator caused an extremely long critical path length as it could not be treated
as a multicycle operation. It took several days for us to trace this issue, restructure our implementation to
allow for multicycle divides, and integrate the Xilinx division core with the rest of our system for another
synthesis run.

There were many other challenges that resulted from attempting to assemble the system end-to-end. For
example, it was quite difficult to work with Connectal to setup the framework and to implement even a
simple control algorithm in C++, with which we did not have much experience. Capturing and using data
from the camera for the test benches was not straightforward and required intermediary conversions to and
from fixed point binary representations. Simulating the camera data on board the ARM core when the SDK
compile failed, matching data types between C++ and Bluespec, and reading and writing files from the
ARM core were all seemingly trivial pieces of the puzzle that ultimately took more time than intended as
we worked towards completion of the project.

6 Design Exploration

There are several possible extensions or design explorations that could be considered, now that the system
has been completed. One very important step would be to consider expanding this implementation to work
with phase and confidence frames of any dimension. For example, all of the Bluespec modules would need to
parametrized to be independent of dimensionality, which would require a significant refactoring of the code.
Additionally, because the number of cycles needed to generate an output is proportional to the number of
points in a frame for several of the modules, a decrease in throughput might be a constraining factor for
this system to work with arbitrarily large frames sizes. Lastly, for the modules that require BRAM for the
storage of frames or lookup tables for computation, larger frame sizes will cause an increase in required
space.

Another smaller extension might entail refactoring the implementation such that it does not require any
processing to be done on entire frames of data. This would primarily be the case for the scene statistics
architecture, that requires a complete histogram to have been formed before votes can be assigned to the
largest bins for the scaling of illumination. Ultimately, this would likely require a redesign in the scene
statistics algorithm that would trade-off search completeness for efficiency and speed.

Finally, from a system completeness perspective, the current implementation could be advanced to incor-
porate the camera control loop into the hardware architecture, once camera frames could directly be clocked
off of the chipset to the FPGA instead of through a USB interface, as it is being done currently for simplicity.

14

7 Acknowledgements

We would like to warmly thank our project mentors, Jamey Hicks and John Ankcorn, for offerring us their
patience, wisdom, and expertise throughout this project. We would like to express our gratitude toward
Professor Arvind, who has taught us a skill set that will be useful well beyond the end date of this course.
And, of course, a special thanks to our TA Ming Liu for his kindness and diligence.

15

