
Extracting Posteriors from a Gaussian Mixture Model 
Xinkun Nie and Paul Myers 

Abstract 
The design of a system for extracting posterior distributions from a Gaussian mixture model is 
presented and its implementation on a FPGA is discussed; the system is intended for eventual 
integration into a processing pipeline for real-time speaker identification. An existing software 
implementation of the posterior extraction algorithm, written using the Kaldi speech recognition 
toolkit, was used as the basis of the design, which comprises three primary modules. A detailed 
description of the microarchitecture for each module is described, as well as the memory layout. 
The performance and numerical accuracy of the system were evaluated and found to be 
satisfactory for most applications of interest. 

I. Introduction 
Recent advances in computational infrastructures and the rapid development of rich statistical 
theories have resulted in a surge in interest in artificial intelligence (AI) applications. One of the 
most commonly performed tasks in many AI systems is classification, the purpose of which is to 
assign to each observation in a set of data an appropriate label from a set of categories. Although 
classification is applied to a large number of highly varied domains, the algorithms used to 
perform the task generalize across applications. For the purpose of this project, the application 
domain of choice is speaker identification. Speaker identification may be used to identify 
individual users of a number of systems, including telecommunication systems used by banks to 
conduct financial transactions, and, more recently, personal assistants such as Apple’s Siri and 
Amazon’s Echo. While many speaker classification algorithms exist, the one chosen for this 
project relies on mathematical constructs known as Gaussian mixture models (GMM) and i-
vectors [1][2]. Prior to performing the classification task, a Gaussian mixture model and an i-
vector extractor must be trained. Then, raw feature vectors may be extracted from the user 
population and filtered through a voice activity detection system. The GMM may then be used to 
extract posterior probabilities from the processed feature vectors, and these posterior 
probabilities may then be given as input to the i-vector extractor; the output of the extractor may 
then be used to perform the desired classification task. An example of such a pipeline is shown 
graphically in Fig. 1. 

While each of the processes listed in the above algorithm is important to the overall performance 
of the system, for the purpose of this project, the step in which posterior probabilities are 
extracted from the GMM will be considered only. Since real-time operation is essential in most 
practical speaker identification systems, a custom design in hardware is desirable; implementing 
this step of the algorithm on a FPGA is therefore justified. 



 

 

II. System Overview 
The hardware implementation of the GMM system is based on a software implementation of the 
algorithm in the Kaldi speech recognition toolkit [3]. On a FPGA, the following two tasks must 
be performed: storing the trained GMM in memory, and computing the posterior probabilities of 
processed feature vectors generated by the GMM. The second step utilizes a large number of 
Gaussian mixture components. To achieve computational efficiency, an algorithm used to select 
the few mixture components that have a very high posterior probability will be implemented 
following a function called gmm-select in the Kaldi software package; this function essentially 
discards the off-diagonal terms in the covariance matrix of each Gaussian mixture. The mixtures 
generated by this function are then given as input to a second function that uses the full 
covariance matrix to produce a more accurate posterior probability; this algorithm is 
implemented in a Kaldi function called fgmm-global-gselect-to-post. The system will output 
these posterior probabilities, which could then be given as input to a test-bench written using 
Kaldi to perform speaker identification in software. 

A high-level diagram illustrating the system architecture is presented in Fig. 1. The data flow 
corresponds to the algorithm described above, with the block labeled “Diagonal Gaussian 
Selection” corresponding to the gmm-select Kaldi function and the block labeled “Full Gaussian 
Selection” corresponding to the fgmm-global-gselect-to-post Kaldi function. The Feature Matrix 
contains the set of feature vectors generated by a voice activity detection preprocessing step in 
software, with each row of the matrix corresponding to the feature vector generated by a given 
audio frame. The frame rate is assumed to be 100 frames per second, indicating that a new frame 
will be delivered to the system every 10 milliseconds. Frames are stored in DRAM in batches of 
a certain size, and all frames in the batch are processed simultaneously. 

Figure 1: Diagram of an example speaker identification pipeline. 
The posterior extraction algorithm implemented in this project is 
represented by the green box in the center of the figure.



 

 

The number of frames processed simultaneously is a parameter that must be set prior to 
synthesis; for testing, each batch consisted of two frames. Each frame consists of 60 dimensions, 
with each dimension being a real number. In order to simplify the implementation and reduce the 
amount of hardware required for the processing steps, fixed-point notation will be assumed 
everywhere in the system; given the size of the numbers being processed and the precision 
requirements of the system, it is expected that 32-bit fixed-point notation should be sufficient. 
Using 32-bit precision enables one dimension to be stored in a single word that is four bytes in 
size. 

Referring again to Fig. 1, a predetermined number of frames is given as input to a module that 
will compute the log-likelihood of each Gaussian component in the diagonal GMM and will 
output an array of 32-bit fixed-point numbers, where the number of columns in the array is the 
number of Gaussian components in the GMM, in this case 2048, and the number of rows is the 
number of frames processed simultaneously. This result is then given as input to a module that 
sorts the log-likelihoods by magnitude and outputs a matrix of 11-bit numbers, the number of 
columns of which is set by user input and the number of rows of which corresponds to the 
number of frames; 11-bit numbers are used, since there are 2048 Gaussians. This result, along 
with the feature matrix input and full GMM are given as input to a module that will calculate the 
posteriors of the pre-selected Gaussian components. The final output of the system is an array 
that contains the posteriors calculated from each Gaussian, with the number of rows being the 
number of frames processed simultaneously and the number of columns being the number of 
Gaussian components selected; the Gaussian components that are not selected are assigned a 
posterior likelihood of zero. 

Figure 2: Block diagram of the system.



III.System Evaluation 
The primary evaluation metric for this project is numerical accuracy, since the relatively low 
frame rate of the input features does not require high performance to achieve real-time operation. 
Power consumption and area are additional features to consider. While area may be estimated 
from the resource utilization reports generated after synthesis, power consumption cannot be 
easily measured or estimated using the available tools for the FPGA; thus, numerical accuracy 
and area will be considered exclusively. In order to verify functional correctness, a software 
testbench was written using the Kaldi code and the system output was compared with the 
software output; numerical accuracy was likewise verified by computing the error between the 
output of the system and the software result and comparing the error to a pre-defined tolerance. 

IV. Memory Layout 
On-board memory is limited to approximately 6.75 MB. Since the diagonal GMM requires 1 MB 
of memory, the full GMM requires 30 MB of memory, and each frame requires 240 B of 
memory, it is not possible to store all of the data required for each computation locally. All 
GMMs and all frames are initially stored in DRAM, and are then read and stored locally to 
perform the necessary computations. Each DRAM address corresponds to a 64 B-line. The data 
are stored sequentially beginning at address zero, with the diagonal GMM being stored first, the 
full GMM being stored second, and the frames being stored third. For each Gaussian in the 
diagonal GMM, it is necessary to store a single 32-bit constant and two 60-element vectors of 
32-bit numbers. For the full GMM, it is necessary to store a single 32-bit constant, a 60-element 
vector of 32-bit numbers, and a 1830-element vector of 32-bit numbers. Each frame consists of 
two 60-element vectors and one 1830-element vector. For the diagonal GMM, the constant for 
each Gaussian is stored in the first byte of a single line and the remaining bytes in that line are 
set to zero. The first 60-element vector is then stored in the next four lines, with the last four 
bytes of the last line set to zero, and the second 60-element vector is stored in the next four lines. 
The allocation for the next Gaussian begins on the line immediately after the last line of the 
second 60-element vector of the previous Gaussian. The allocation for the full GMM begins on 
the line following the last line of the last Gaussian in the diagonal GMM. As with the diagonal 
GMM, the constant for the full GMM is stored in the first byte of a single line. The 60-element 
vector is stored in the next four lines, with the last four bytes of the last line being set to zero, 
and the 1830-element vector is stored in the next 124 lines, with the data in all empty lines being 
set to zero. For each frame, the two 60-element vectors are stored in eight lines; after all such 
vectors have been stored, the 1830-element vectors are stored. A schematic of the memory layout 
is shown in Fig. 3. 



 

 

V. Microarchitecture 
V.I.Diagonal GMM Selection Module 
Fig. 2 presents a block diagram of the microarchitecture for the diagonal GMM selection 
unit, labeled “Calculate Log-Likelihoods” in Fig. 1. A single log-likelihood is calculated 
from a single frame and a single Gaussian component by performing a series of matrix 
operations on the constituents of each Gaussian component. The first set of operations 
requires computing the dot product between a single frame, which is represented as a 60-
element vector of 32-bit fixed-point numbers, and the product of the mean and inverse 
variance of each Gaussian, which is also a 60-element vector of 32-bit fixed-point 
numbers. The product of the mean and inverse variance is assumed to be computed in 
software and stored directly in the DRAM, so the computation performed in hardware is 
strictly the dot product between two 60-element vectors. The second aspect of the 
computation is a second 60-element dot product, this time between the same frame with 
each element squared and scaled by -0.5 and the inverse variance of the same Gaussian. 
The squaring and scaling of the frame vector is assumed to be done in software and 
stored directly in the DRAM. To perform these dot products, a functional unit 
comprising a set of 64 parallel 32-bit multipliers and a five-level tree of 32-bit adders 
was designed. The computation proceeds in stages, as follows. First, the corresponding 
elements of the two vectors are provided as input to the bank of multipliers, which 
produces 64 32-bit numbers. These 64 results are then summed pairwise by a bank of 32 
parallel adders, which produce 16 32-bit numbers; the computation proceeds to 
subsequent layers of adder banks until a single 32-bit result is produced. 

Figure 3: Schematic of the memory layout.



 

 

Although each vector is of 60 dimensions, 64 parallel multiplications are done. This 
choice was made to ensure that each layer of the adder tree consists of an even number 
of adders; the final four elements are set to zero, thereby leaving the dot product 
unchanged. The two dot products described above are computed in parallel and the 
results are summed; this result is then summed with a constant that is unique to each 
Gaussian to produce a single log-likelihood. In the final design, a variable number of 
frames could be processed in parallel; for simplicity, a batch of two frames was chosen. 

Coordinating the transfer of data between the DRAM and the diagonal GMM module is 
complicated by the restriction that each response from the DRAM is limited to 64 B. For 
each 60-element vectors of 32-bit numbers, it is therefore necessary to make four 
requests to the DRAM, since each dimension of the vector is 4 B in size for a total of 
240 B per vector. The DRAM Interface shown in Fig. 2 is responsible for recording 
which DRAM addresses are needed by the processing modules and making the 
necessary requests to the DRAM. Since full 60-element vectors are requested from the 
DRAM in sets of four, the DRAM Interface unit is also responsible for concatenating the 
four DRAM responses obtained for each vector into a single vector for use by the 
functional units. The single resultant vector is then stored either in the Local Gaussian 

Figure 4: Microarchitecture of the diagonal GMM selection module.



Memory or the Local Frame Memory depending on the type of data being used. The 
Local Memory Controller is then responsible for generating requests to the local 
Gaussian and frame memories and sending the responses to the functional units. The 
DRAM Interface and Local Memory Controller are designed internally as pipelined state 
machines. 

 

V.II.Sorting Module 
For the sorting module, the Heap Sort algorithm was implemented, as it sorts array 
elements in-place, thereby reducing memory usage. The module is responsible for 
extracting the maximum k elements, where k is the number of Gaussians to be selected 
prior to computing the posteriors using the full GMM. A min-heap of size k, initially 
empty, that will eventually contain the maximum k elements out of 2048 log-likelihood 
values computed from the previous diagonal GMM module is maintained. With every 
incoming log-likelihood, there are two cases. In the first case, the k-element min-heap has 
not been filled, so the incoming element will be appended to the end of the existing tree, 
and a heap-up is done. To heap-up, the current node is compared to its parent node. If the 
current node is greater, the two elements are swapped and the operation is repeated. In the 
second case, the k-element heap has been filled. The incoming element is compared with 

Figure 5: Flow diagram of the state machine implemented in the 
sorting module. 



the top element of the heap. If it is smaller than the top element of the heap it will be 
smaller than all the elements of the heap, since a min-heap is used, in which case the 
element is discarded and nothing is done. Otherwise, the top element of the tree is 
replaced with the new incoming element, and a heap-down is done. To heap-down, the 
current element is compared with both of its children nodes. The minimum is found 
among the three, and the smallest element is swapped with the current element. If the 
smallest element is the current element, nothing is done; otherwise, the heap-down is 
repeated. As a result, the k maximum numbers given all the elements seen so far are kept. 
Both the heap-up and the heap-down operations take O(log(k)) time, giving a final run-
time of O(n*log(k)), where n is the total numbers of elements; in the present case, n is 
2048. Fig. 4 shows a flow diagram of the sorting algorithm. 

In hardware, the sorting module was implemented as a finite-state machine (FSM). The 
inputs to the module are the 2048 log-likelihoods computed by the diagonal GMM 
selection module and their respective indices for each frame; the module outputs the 20 
largest log-likelihoods and their respective Gaussian indices. 

 

Figure 6: Microarchitecture of the full GMM selection module. The 
high-level design is similar to that of the diagonal GMM selection 
module, with the exception of the accumulation register (Acc Reg) 
highlighted in red. The internal Local Memory Controller, local 
memories, and DRAM Interface are different from those of the 
diagonal GMM selection module, since the full GMM model is 
represented differently than the diagonal GMM model is.



V.III.Full GMM Selection Module 
Fig. 4 shows a diagram of the full GMM selection module, labeled “Calculate 
Posteriors” in Fig. 1; the high-level microarchitecture is similar to that implemented in 
the diagonal GMM selection module. The DRAM Interface is again responsible for 
generating requests to and receiving responses from the DRAM, as well as packaging the 
DRAM responses into a form that is suitable for processing by the functional units. The 
Local Memory Controller is again designed to generate requests to the local memories 
and output the responses to the functional units; the functional units themselves are 
identical to those used in the diagonal GMM module. The primary difference between 
the to GMM modules is the presence of the accumulation register, which is labeled Acc 
Reg and highlighted in red in Fig. 4. To compute a log-likelihood for a given frame and 
Gaussian pair, it is necessary to compute a dot product between the given frame and the 
product of the mean and inverse covariance of the given Gaussian; the product of the 
mean and inverse covariance is assumed to be computed in software and stored directly 
in the DRAM. This dot product is similar to those computed in the diagonal GMM 
module, as the dot product is between to 60-element vectors of 32-bit numbers. The 
second part of the computation requires computing a dot product between two 1830-
element vectors. In order to reuse the previously designed functional unit, the 1830-
element dot product was partitioned into sets of 60-element dot products. Since 1830 is 
not a multiple of 60, the multiple of 60 that is closest to and larger than 1830 was used, 
which is 1860; the additional 30 dimensions are set to zero, so that the dot product 
remains unaffected. Completion of the full 1860-element dot product therefore requires 
31 60-element dot products. The accumulation register is used to sum the result of the 
current 60-element dot product with the accumulated results of the previous dot 
products. Once the 1860-element dot product is complete, the result is summed with that 
produced by the the dot product between the frame and product of the mean and inverse 
covariance; this result is then summed with a constant unique to each Gaussian to 
produce the final log-likelihood. Mathematically, the second dot product is performed 
between the flattened lower-triangle of the inverse covariance matrix for a given 
Gaussian and the flattened lower-triangle of the product of a given frame and its 
transpose. 

VI. Results 
One of the primary concerns associated with using fixed-point notation instead of the floating-
point notation used in the software implementation of the algorithm is accuracy loss. The system 
was designed using 32-bit numbers, where the number of bits allocated for the integral and 
fractional parts was parameterized and could be changed prior to synthesis. For initial testing, 16 
bits were allocated to both the integral and fractional parts. The average error between the 
posteriors generated by the system and those generated by the software was computed by finding 
the percent difference between the posterior for each Gaussian generated in software and 
hardware, summing the differences over all of the Gaussians, then dividing by the total number 
of posteriors generated as output, which was five in the final test; the error was computed 
individually for each of the two frames tested. The average error for the first frame was found to 



be 0.0085% and the average error for the second frame was 0.0078%. These errors are quite 
small and were considered negligible for most applications of interest; thus, the original choice 
of a 32-bit fixed-point representation with 16 bits allocated to both the integral and fractional 
parts was deemed sufficient. The calculated errors for each selected posterior for the first frame 
are shown in Table 1. 

The design was synthesized, placed, and routed for eventual simulation on a FPGA. Although the 
design was never successfully run on a FPGA, reports for timing and resource utilization were 
still made available after synthesis. The design was synthesized with a relatively conservative 
clock frequency of 20 MHz in order to minimize the number of timing violations generated 
during synthesis; some salient results of synthesis are summarized in Table 2. 

One notable challenge of implementing this design on a FPGA was meeting area requirements. 
In order to reduce the critical paths in the design, pipelining was used extensively, particularly in 
the functional units. Pipelining necessarily requires the use of intermediate storage elements 
between stages, thereby increasing the hardware cost of each module. Since full 32-bit 60-
element vectors were often passed between pipeline stages, the storage elements were required to 
be quite large, which initially prevented the design from fitting on a FPGA board. Most of these 
storage elements were two-element FIFOs, so area was reclaimed by reducing the size of each 
FIFO in the functional units to one. The performance penalty incurred by such a change was 
difficult to measure, but is estimated to be tolerable. Area could have been further reduced by 
decreasing the number of parallel multipliers and adders in the functional units by folding the 
computation. 

Gaussian ID Hardware Value Software Value Error

0 -156.495 -156.5087 0.00875

4 -161.275 -161.2985 0.0145

5 -195.919 -195.9338 0.00755

6 -181.110 -181.1254 0.00850

8 -192.481 -192.4866 0.00290

Table 1: Simulation Results and Calculated Errors for the First Frame



 
This approach would have increased the number of cycles required to complete each calculation, 
but would have also likely reduced the critical path length. An alternative approach could have 
been to use BRAM in place of wide registers, since, according to Table 2, the BRAM utilization 
is quite low. 

VII.Conclusion 
Although the design was not successfully simulated on a FPGA, the successful simulation of the 
implementation indicates that the design performs the desired task sufficiently well as measured 
by numerical accuracy and performance. The design could be improved by further reducing the 
area and shortening critical path lengths to reduce the clock period. 

Acknowledgements 
Glory is due first and foremost to the Lord Almighty, by whose grace the completion of this 
project was made possible. 

The authors would also like to thank Professor Arvind for his guidance throughout the course of 
the term, as well as Ming Liu and Dr. Murali Vijayaraghavan for their assistance with the 
implementation of the design. The authors would especially like to thank Dr. Michael Price for 
generously offering his time and advice during the completion of the project. 

References 
[1] P. Kenny, “A small footprint i-vector extractor,” Odyssey 2012: 1-6. 
[2] N. Dehak, P.J. Kenney, R. Dehak, P. Dumouchel, and P. Ouellet, “Front-end factor analysis 
for speaker verification,” IEEE Trans. Audio, Speech, Language Proc., vol. 19, no. 4, May 2011. 

Parameter Value

Slice LUTs 295450 (97.31% utilization)

Slice Registers 260133 (42.84% utilization)

Block RAM Tiles 354 (34.36% utilization)

DSP Blocks 1920 (68.57% utilization)

Clock Frequency 20 MHz

Critical Path 33.405 ns (In DRAM Control)

Total Negative Slack 0.000 ns

Total Negative Slack Failing Endpoints 277973

Worst Negative Slack 0.077 ns

Table 2: Summary of Synthesis Results



[3] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek, N. Goel, M. Hanneman, P. 
Motlicek, Y. Qian, P. Schwarz, J. Silovsky, G. Stemmer, K. Vesely, “The Kaldi speech 
recognition toolkit,” IEEE 2011 Workshop on Automatic Speech Recognition and Understanding, 
December 2011.


