Jonathan Terry

Stream Buffers for Effective Prefetching
in the RISCV Processor

By Jonathan Terry

Project Objective

Whenever we talk about the performance of computers, we are concerned
with both the efficiency as well as the raw speed. In this project, I sought to
improve processor performance by increasing the efficiency of computation.
As we are well aware, a memory hierarchy exists in computers in a trade
off of size and speed. Despite this inherently necessary design, there exist
bottlenecks between the different memories which cause a reduction in com-
puter efficiency. In lab 6, we added a Level 1 Cache to reduce the latency
discrepancy between DRAM and registers. That said, everything that exists
in the cache must be first acquired from DRAM, and this can still cause a
significant decrease in processor efficiency. My take on how to improve the
performance of the existing RISCV processor of lab 6 was to implement a
device to prefetch words from memory in an intelligent and predictive man-
ner to aid in the filling of the cache. The efficacy of prefetching stems from
the likelihood that other non-memory operations can be done in the interim,
at least partially masking the memory access operations.

The way by which I chose to explore the realm of prefetching was through
the implementation of a device called a Stream Buffer, first proposed and
studied by Norman Jouppi in 1990. This device acts like an aid to the cache,
capable of prefetching a certain number of data words in a certain pattern
to present to the cache before the cache even requests it. The hope is that
while the processor isn’t making memory accesses, the Stream Buffer is busy
interacting with DRAM so that the cache seldom has to. In developing and
testing this system, the FPGA is an obvious choice because we are testing
a device that one would hope to realize in computer hardware. In terms of
performance improvements, we hope to see a mitigation in cache interactions
with DRAM and as such a reflection in the processor IPC.

Jonathan Terry

Background

As previously stated, the Stream Buffer lives in limbo, alongside a cache and
interacting with lower memory. In the event that there are multiple caches,
Stream Buffers may fetch from either lower caches or DRAM depending
on the architecture. Furthermore, since both data memory and instruction
memory may benefit from prefetching, you may find the Stream Buffer in
either type of cache. In either case, their goal is the same: to fetch data
words from memory before they would be requested normally, thus improv-
ing processor performance.

At its core, the Stream Buffer is a relatively simple FIFO data structure,
with each slot in the FIFO containing a memory address identifier, an avail-
able bit, and the cache line associated with the memory address. Upon a
cache miss, the head of the Stream Buffer (i.e. the first element) has its ad-
dress compared to that of the address that missed in the cache. If the address
matches and the cache line is available, the cache line is replaced as normal.
If the address is to be there, but is not yet available, you wait until it is
available, since no matter what this will in the worst case be neutral. Should
a cache line be popped from a FIFO, the vacancy at the end of the FIFO will
be filled by another cache line as determined by the Stream Buffer. Finally,
in the unfortunate case that the Stream Buffer does not have the cache line
we want, the cache then has to interact with DRAM directly.

Now that the basic operation of how one interacts with a Stream Buffer
are out of the way, we should ask ourselves how the Stream Buffer deter-
mines what to fetch. The most naive Stream Buffer will, upon there being
a single cache miss, begin allocating sequential cache lines until the FIFO is
filled. While this is very appropriate for the instruction cache, it may not
be so appropriate for the data cache. If the goal of the Stream Buffer is to
prefetch data, and say you are doing something like a matrix multiplication,
then the elements you are accessing may lie several cache lines apart from
each other. Therefore, in order to make the stream buffer more efficient, one
can create predictors to determine what the Stream Buffer fetches and when.

Jonathan Terry

Finally, something to consider is when the Stream Buffer is invoked. For
instance, certain memory access patterns may not warrant an entire Stream
Buffer. Tangentially related to this question may be how many Stream
Buffers exist in a given cache. When you start adding additional Stream
Buffers, then a question of an allocation policy comes into play. When does
a Stream Buffer get acquired, and if all are taken, which one gets the axe.
All of these questions were explored in my design, and naturally I made the
design of my modules quasi-parametric (used typedefs) in order to make the
exploration easier.

to data cache, register file, and MSHRs load info
4 _— (PC. address)
from write-
—D[tag ‘cache block I com]}amtor] back stage
.
* v
H —»{ tag |cache block | comparator | Stride
> - store predicted | Predictor
E ﬁ: stride in
new last | Las Predicted H|||| streaming buffer .
address Address Stride I on allocation if address not
~ stride predictable.
store In markov
markgy s U] last address
hir? = v
= || - Markov
miarkov address — if hit. return .
siride address H Il predicted Predictor
v qf@‘a address
R

&

fromfto next lower level of memory

Figure 1: Diagram showing the general architecture of a set of Stream Buffers,
highlighting the structure of the FIFOs as well as how they interacts with
lower memory. Further, it shows the addition of predictors to aid in the
prefetching process.

Jonathan Terry

High-Level Design

The original high-level design of the stream buffer was to create a Stream-
Buffer module, a Predictor module, and update the Cache module to support
a Stream Buffer. Ultimately, the line between the Cache and the Predictor
were blurred, and moreover, it turned out that I needed to implement a
Memory Controller in order to delegate requests and responses to the DDR3
Memory from both the Stream Buffer and possibly the Cache simultaneously.
The final design that I converged on was, at a system level, as seen in the
figure below:

allocate
C aChe doSearch SB
getStream
7
W N
Req/Resp Req/Resp
RequestScheduler

Figure 2: Diagram showing the high-level design of the Stream Buffer System
that I designed.

Jonathan Terry

In the high-level design, an important decision was how to design the API’s
of the respective units. After giving it thought, since I was going to have
to redesign the Cache anyways, I decided to integrate the predictor into the
Cache. As a consequence, this allowed the Cache to simply make a request
to allocate a Stream Buffer starting with a certain address and a particular
access pattern (also known as a stride). The Stream Buffer also exposes a
search function to check for a stream hit, and likewise it also supports a re-
turn function. This seems like the best way to decouple the two, and allows
for many interesting design decisions on the end of the Stream Buffer. Un-
beknownst to the Cache, the SB may have only one FIFO or it may have 32.
Further, replacement policies are completely internal to the Stream Buffer.
This can allow for modular development and testing of different replacement
policies and coherence protocols without needing to change the Cache.

Aside from the Cache and the Stream Buffer, an initially unexpected, but
critical aspect of the design was the Request Scheduler, which was effec-
tively a memory controller that could support requests from both the Cache
and the Stream Buffer simultaneously. The Request Scheduler exposed two
separate Request and Response functions, one for the Cache and one for the
Stream Buffer, and was in many ways can be seen as a wrapper for the DDR3
Memory to support multiple concurrent requests.

Test Plan

The test plan for this setup was simple and yet effective. In order to get the
most time possible for system design and hardware exploration, I decided to
leverage the existing test infrastructure for lab 5 and lab 6, using the same
benchmarks for the most part. In addition to the provided benchmarks, I
created two additional benchmarks: one to test performance on loops with a
simple stride and another to test constant non-sequential strides.

Jonathan Terry

Microarchitecture

To discuss the microarchitecture, and to highlight the intended modular-
ity of the system, it is worthwhile to discuss the three major components
separately:

1. Streaming Cache (StreamingCache.bsv)
2. Stream Buffers (StreamBufferController.bsv)

3. Request Scheduler (RequestScheduler.bsv)

Streaming Cache

In order to get the Cache and the Stream Buffers to play nicely, I had to
make some updates to the Streaming Cache. Namely, in the request function,
I added the ability to both check a Stream Buffer module for hits as well as
allocate a Stream Buffer according to a predictive pattern. This simply boils
down to some added muxes. Furthermore, I was able to keep the existing
direct mapped cache, which was effectively vectors of registers. With respect
to the predictive model, I directly integrated it into the Streaming Cache,
so that with a simple if/else clause one can invoke a Stream Buffer with a
certain stride.

Stream Buffers

The bulk of the work in this project, the stream buffer, is at its core a simple
idea, but in practice difficult to implement. Within the Stream Buffer were
many statically elaborated rules as well as vectors of structures. As stated
previously, the Stream Buffers are essentially FIFOs, so vectors of FIFOs were
the main constituent of the microarchitecture. Alongside these FIFOs were
registers storing information such as next address to fetch upon a stream hit,
whether or not the stream has been allocated, and even the initial address
that allocated the stream. The idea behind storing all of this information
was to build a Markov model within the stream buffer to aid in non-linear
prefetching. Additionally, many rules were statically elaborated based upon
typedefs defining the structure of the stream buffer (such as the number of
streams and the length thereof).

Jonathan Terry

From processor To processor

E tags data Direct mapped cache
. .
N N% 4 N4
tag and tag and tag and
com- com- com-
parator line of data parator | a ne line of d: parator
tag jata tag a| one a a
tag jat tag a | on a
tag i jat 1 tag a
ﬁ% yﬂ
N/ N\ /‘ NV
7
2
\ ;

To next lower cache From next lower cache

Figure 3: Diagram showing the architecture of the stream buffer, highlighting
the FIFOs and the prospect of multiple running parallel.

Request Scheduler

The idea behind the Request Scheduler was to have two FIFOs which ac-
cepted requests from both the cache and the stream buffer, and made requests
to the DDR3 memory. In the interim, receipts of these requests (given an
arbitrary order) were then placed into another FIFO. Upon responses from
the DDR3 Memory (which occurred in the order of the FIFO), the receipt
was used to delegate the responses to the correct destination upon responses
from the DDR3 Memory. This simple design works because DDR3 requests
are serviced in order of request. Furthermore, in this design, BypassFifos
were used everywhere in order to reduce overhead generated by the Request
Scheduler.

Through the use of rather large input FIFOs, this allowed for multiple Stream
Buffers requesting cache lines to be serviced at the same time without con-
flict. The general structure of the receipts used in the middle FIFO ensure
that the requests are returned to the proper stream.

Jonathan Terry

Pending Cache Req. Cache CLs

Request Receipts

Pending SB Regq. Stream CLs

Step1 Step 2

Figure 4: Diagram of the Request Scheduler, with each rectangle representing
a FIFO. In step 1, DDR3 Requests are made, and a receipt is passed into the
middle FIFO. In step 2, responses from DDR3 are combined with the receipt
and shipped to the correct destination.

Jonathan Terry

Implementation Evaluation

Discussion of Challenges

In implementing the Stream Buffer unit, there were several challenges, al-
though almost all of them were conquered. In the beginning, the hardest
part was figuring out which algorithms to use and how to recreate Jouppi’s
original paper. Literature was vague as to the details despite promising that
it would work, and that it would work well. Given the sound theory I charged
ahead, tackling the problems as they came knowing there would be a light at
the end of the tunnel. Luckily, the one area that I did not run into trouble
was the synthesis and testing on an FPGA.

The unforeseen big problem that I encountered was the memory request
scheduling issues, but luckily that problem was rather easily solved as soon
as I realized the nature of requests lent itself to the simple solution I dis-
cussed in the previous section on the microarchitecture. Despite one weird
rule firing when it wasn’t supposed to (which took forever to track down), I
got this working just fine. From the standpoint of changes, the addition of
this scheduler was one of the biggest.

Although it may seem somewhat silly, one thing that I struggled with was
developing a good, modular API for each of the modules. At first, I was
keeping the predictor inside the Stream Buffer, but that was requiring too
much exposure of the internal workings to the Cache. I eventually settled on
combining the prediction policies with the cache to make things cleaner and
simpler. Furthermore, I delegated the specifics of buffer reallocation to the
stream buffer, which allowed me to unclutter the cache and make it easier to
understand.

Jonathan Terry

Results of Implementation

Overall, the addition of a Stream Buffer was a success, and resulted in im-
proved processor performance. The total project ended up being roughly 400
lines of bluespec, 100 lines of additional tests, and a little over 120 hours of
work. In this design, I made extensive use of existing I[P and infrastructure,
including lab6, with my main reused components (outside of the processor)
being the special Fifos, the DDR3 Memory, and existing interface designs.
However, to make the DDR3 Memory more realistic, I added a delay factor
so that memory requests took about 100 cycles

As a result of the implementation, I saw that even with a length one stream
buffer, I was getting an average performance increase of 15 percent above the
baseline (cache only) IPC and it saturated at about 20 percent with a stream
buffer length around 4ish for the assembly tests. This recreates the original
paper very well, although the exact metrics don’t exactly line up. The main
difference in this setup and Jouppi’s original paper was the block size of the
DM Cache (ours is 16, his was 4). If one was to dilate the curve by a factor
of 4, then the trend matches almost exactly. That being said, the stream
buffer does not fair as well on the 'real’ bench marks. On average getting a
mere 5 percent increase, except for the strided access test which was much
higher.

Additionally, in my implementation, I was able to get a two-delta stride
detector working. In the tests where this would be useful (i.e. a non se-
quential cache line stride) it showed greatly improved performance. The one
thing that I was not able to accomplish was the Markov Predictor. This
didn’t happen in part due to how vague the literature was, and moreover it
would have been very messy and ruin the modularity to get it to work. Since
this was a lofty reach goal, I am not too upset that it didn’t work. Despite
this setback, I was still able to meet my initial project goals of improving
processor performance.

10

Jonathan Terry

IPCs per SB Implementation

=o=gaseline

=Streaming S84

Figure 5: Graph of assembly benchmark performance after adding stream

buffer of length 2.

Stream Buffer Variant IPCs on Real Benchmarks

e=pm=Seriesl

el=Series2

esr=Series3
0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00

Figure 6: Graph of real benchmark performance after adding stream buffer

of length 2.

11

Jonathan Terry

Average Percent Improvement

20
18 o o

16
14
12

10 === pverage Percent
Improvement

o N OB O o

Figure 7: Plot showing the average percent increase in performance as a
function of stream length. Note that this closely recreates Jouppi’s results
when accounting for block size.

Design Exploration

In terms of the design, I would be most interested in observing variations
in replacement policy as well as seeing if the Markov Predictor is actually
feasible, or if its touted success is that of a few carefully chosen benchmark
results. In my project, I did successfully explore both the stream length as
well as number of streams. I found that the number of streams had little
effect, but I definitely could see my reallocation policy being the problem
(FIFO instead of LRU). Furthermore, an interesting exploration would be
in developing FIFOs that can have data modified at a given index. This
could make cache coherency less of an issue when having a stream buffer in
the data cache. Finally, another exploration of policy could be in prediction
and allocation of the stream buffers. For instance, it would be cool to do
some real research into what goes into a good Markov model. Furthermore,
it would be neat to implement this on a real processor, in order to stress test
its performance through running an operating system.

12

