6.375 Spring 2016 Final Project
Final Report

Group 2
David E. Williams and Lucas L. Sanches
1. Introduction

From the birth of popular music, technology shaped its creation. This effect
has touched every aspect of the industry, from the business model to the music
itself. One particular interest is how technology has changed the style and sound of
music. For example, the electric guitar forever changed music by ushering in rock,
while computers caused an equally large shift by enabling modern electronic music,
such as techno. The synthesizer was another influential device that changed rock
music as well as helped to create electronic music.

Synthesizers were the first purely electrical instruments. Although electric
guitars preceded synthesizers, synthesizers produce purely electronic signals while
electric guitars convert mechanical signals (the vibration of wires) into voltages that
are then processed to produce sound. Due to this mechanical input, mechanical
instruments produce distorted waveforms that give the instruments their distinctive
sound. Similarly, the unique sound of a synthesizer is due to the perfect waveforms
generated by these instruments. This perfect signal has a sound that is nothing like a
conventional instrument and has helped to create as well as heavily influenced
electronic music. Influential bands such as Kraftwerk and Brian Eno used analog
synthesizers prominently in their seminal work.

The first synthesizers were analog. In the eighties however, analog
synthesizers were largely replaced by digital synthesizers due to the extreme
flexibility and cheapness of digital systems. In addition, digital systems can produce
much more complex waveforms because they can easily generate non-integer
harmonics and use memory to arbitrarily delay signals

2. Project Objective

It is with this history in mind that this project presents an implementation of a
Digital Synthesizer on an FPGA. A digital synthesizer (synth) is an electronic system
that uses DSP blocks to generate a wide range of sounds to produce music. A
modular synth is a collection of modules that can be connected (patched) in almost
limitless configurations to produce unique and interesting sounds. These modules
include (but are not limited to) oscillators, arbitrary waveform generators, summers,
filters, mixers, envelope generators, distorters, and delays. The goal of these blocks
is to generate a stream of audio data based on an input from a keyboard. By making
the system programmable and modular, the harmonic content of the waveform can
be controlled to generate tones with arbitrary textures and timber. In addition, time

domain modifications can be used to create effects such as vibrato, chorus, tremolo,
and reverb.

The goal of this project was to develop a reconfigurable modular digital
synthesizer on an FPGA with an Envelope Generator, a Signal Generator, and at
least three effects blocks. The advantage of placing a synth on an FPGA is that it
enables a large number of DSP calculations to be performed in real time at a much
lower cost and power consumption compared to using a processor. The synthesizer
takes in information on what notes to play and for how long and generates 16-bit
audio sample data at 44,100 samples per second. By ensuring that the system
throughput is at least 44,100 samples per second, the synthesizer is able to
opperate in real time as an instrument. It would be relatively simple to interface this
setup with an ADC and a keyboard control circuit to create a complete hardware
synth. This physical construction was outside the scope of the project.

3. Background

Our proposed design leveraged the advantages of digital processing by using
additive synthesis to create arbitrary waveforms. The tonality of an instrument, the
reason that guitars and violins sound different, is determined by the harmonic
content of the note that it plays. In additive synthesis, a bank of oscillators is used to
add sinusoids of different frequencies and amplitudes. By carefully selecting the
parameters of these harmonics, it is possible to generate arbitrary waveforms such
as saw-tooth or square waves. In addition, interesting effects such as beat
frequencies and chords can be achieved by using harmonics at non-integer multiples
of the note frequency.

Yet, harmonics are not the only parameters that describe an instrument's
sound. Another important aspect is how the instrument’s volume changes over time.
Therefore, an envelope generator is needed to mimic the distinct percussive sound
of a piano, the plucking sound of a guitar, or the gentle rise and fall of a violin. To
accomplish this programmability, the envelope generator creates an
Attack-Decay-Sustain-Release waveform (ADSR) shown below.

A,, D, R

or ¥ "t

pressed released

The signal quickly rises to a peak amplitude during the attach phase before
dropping to an amplitude that is held for the duration of the note. When the note is
released, it slowly decays back to zero. AlImost any instrument can be mimicked by
making the attack, decay, and release times, in addition to the sustain level,
programmable.

While the signal and envelope generator can be used to mimic an instrument,
the power of digital circuits is fully maximized by including several special effects
blocks to create sounds that are more dynamic. The presented design contains five
such effects. The Echo block repeats the inputted signal after a fixed time delay to
create and “echo”. The Flanging module repeats the inputted signal after a time
delay that itself changes over time, creating an interesting sweeping comb-filter
effect. Tremolo creates a rapid variation in signal amplitude while distortion distorts
the waveform to create additional amplitude dependent harmonics.

4. High-Level Design

Effect Pitch Duration Other Channeis

| Routing Control Channel Out] X , Output
ianal \/ | Envelop Y| Signal

Ges 'gnat Control | 4“]
nerator |
Switching

' In

: In Q Out R Out
1 Param EChO Param ——»
I —
PN X ou n L \/ out
Param ——» — Param DIStOI'tIOl'I ‘_>
H —
(N 4’ In X Out In ﬂ Out
| Param —» — Param Tremolo '—'
In . iﬂ out In X ou
“Param Flanging Param —»

A A

The diagram above depicts the high-level diagram of the implemented
system. The Signal Generator, Switching Matrix and Envelop Control blocks were
considered the most critical ones. The Effects showed were initial ideas before the
implementation. The final design had four of them: Echo, Flanging, Distortion, and
Tremolo. The location of the Envelope generator was moved to simplify architecture
design.

The pipeline behaves in the following matter. A Note struct containing the key,
duration, and amplitude of the note to be played is passed to the signal generator.
The signal generator passes the generated samples to the envelope generator in
addition to how many samples have passed since the note began and how many
samples are in the note. The envelope generator uses this time information to
generate the appropriate envelope and multiplies the sample data by the envelope
amplitude. The output samples of the envelope generator are the routed through an
arbitrary chain of effects including Echo, Flanging, Tremolo, and Distortion. In order
to maximize the number of sounds that can be generated, the signal chain is
reconfigurable without requiring the FPGA to be reprogramed. In addition, any of the
effects can be bypassed. The output of the switching network is then returned to the
test bench.

Most of the parameters in the system are reconfigurable over Sce-Mi without
requiring the FPGA to be reprogramed Because it does not make sense to reroute
the signal chain while playing a note, reconfiguration can only occur when all of the
blocks and FIFOs are “finished” and do not contain any sample data. If all of the
blocks are finished and configuration data is in the configuration input FIFO, the
synth enters configuration mode and all of the parameters are altered. Once
configuration is complete, the synthesizer will accept note inputs again. Configured
and Finished signals are passed to the test bench in order to synchronize the
software and hardware.

Configuration data is passed to the synth in a single struct. The top-level
module then splits off the configuration data for each individual module (also stored
as structs) and passes them to the appropriate modules. This scheme only requires
a single Sce-Mi port, reducing interface complexity. However, because a very large
amount of data is needed to program the harmonics in the signal generator, the
Sce-Mi port is used multiple times so that information on only one harmonic is
passed at a time.

In this scheme, the software test bench can dynamically reconfigure the
synthesizer and then pass in a series of notes to generate a song. A large number of
harmonics in addition to a song, “Karma Police” by Radiohead are hard-coded into
the test-bench. The output of the synth is then stored in a pcm file that can easily be
converted into a wav file and listened to.

5. Test Plan

To facilitate testing and implementation, we utilized the testing framework
developed for the Audio Pipeline laboratories. Inputs to the system were signals
signifying what waveform to generate and for how long. The synth then generates a
PCM file composed of the appropriate audio signal. Audacity was used to visual
inspect the waveforms to ensure that both the shape (sin vs. square vs. saw-tooth)
and envelope were correct.

Individual modules were tested with input and expected output PCM files
created using MATLAB (or results found for other software implementations).
Because the switching matrix is a pipeline, display statements were used to ensure
that the effects fired in the proper order.

6. Microarchitectural Description

6.1 Switching Matrix

Scemi Interface

l Switching
Control | Network
Logic

J i

Sig Gen T Channel Out

@ —
b e
>

Reverb Out ’ Reverb In

Echo Out Echo In

The switching matrix is comprised of a series of multiplexers that redirect the
output of each block to the next block. These multiplexers are controlled by a control
logic unit that decodes the block order from a Sce-Mi interface and routes the signals
accordingly. The calculated selection bits are stored in registers until the system is
reconfigured.

For the switching matrix Sce-Mi interface, an enum is used to assign each
block a name/number. Because there are a fixed number of blocks, every
reconfiguration order can be represented by a list of these numbers. To account for
configurations where not every block is used, an additional enum value, NONE, is
used to indicate that section of the pipeline should be bypassed. Thus, the Sce-Mi
interface to the switching matrix consists of a vector of integers defining the order.

In order for the modules to be completely reconfigurable, the input and output
interfaces must be consistent. Therefore, the interface to each module is a 16 bit
fixed-point sample. This abstracts away the internal format necessary for the effects
computation (such as a complexMP for pitch shifting in Laboratory 4). This interface
trades off performance and area for ease of implementation and configurability as
multiple blocks that process data in the frequency domain will require separate FFTs
and IFFTs. FIFO's are used at the input of each block to aid in pipelining.

6.2 Signal Generator

Scemi
Interface
Pointer 5~ LUT
Phase Shift X
Amplitude Sample
<} Out
+ S
Control Pointer LUT
Logic
Phase Shift ‘ 4®—
Amplitude Waveform Generator

The signal generator consists of a bank of “oscillators” who amplitudes and
frequencies can be adjusted. The oscillator implementation is a BRAM LUT that
stores sine wave data calculated at compile time. A pointer indicates what position
along the waveform should be read for a sample at a given moment in time. Different
frequencies can be generated by incrementing the counter the proper amount for
each sample. A second LUT is used to map input key numbers (for example, middle
C = 60) to the phase shifted needed to generate the appropriate frequency. The
amplitudes read from the lookup table are then multiplied by an amplitude factor and
added to the output sample. Up to 100 harmonics can be generated by summing the
output of 100 oscillators. The appropriate duration of the signal is generated by using
a counter to generate the appropriate number of samples.

Because the LUT is read only, every oscillator in the system uses the same
LUT. The size of the lookup table is set by the sample rate and the minimum

frequency. This is because the minimum frequency’s pointer will increment the least
amount. Because we used the typical audio sample rate of 44,100 Hz with a sample
size of 2 bytes, a 1MB LUT (2”16 samples) is used to generate frequencies as low
as 20Hz. If necessary, the size of the LUT and/or the sample rate could be reduced
to save area or improve the minimum low frequency signal.

To support this arbitrary harmonic generation, a Sce-Mi interface is
necessary. It is important to note that while the fundamental frequency of the note to
be generated is specified in real time, the structure of the harmonic content is
configured similar to the effects and network configuration. Therefore, this process
does not occur in real time. Thus, harmonics can be added through multiple calls
through the Sce-Mi interface. The number of harmonics that can be generated is
limited by the performance of the folded structure and/or the number of parallel
generators. Due to BRAM access limitation, the proposed design used a folded
structure to save area. The data structure used to store harmonic data is a struct
indicating the amplitude, location, and the offset of the harmonic to be added. In
order to support non-integer harmonics, the location of the harmonic is generated
from the fundamental through a linear function. Therefore, a multiplication factor and
offset should be specified for each harmonic. In addition, an enable bit is used to
disable harmonics should 100 not be necessary.

6.3 Managing System Reconfiguration

All of the modules have a default state that can be reprogramed. Because it
does not make sense to reconfigure the pipeline while signals are still being
processed, each module indicates when they are finished. Once all of the modules
are finished performing their calculations, the pipeline is reconfigured. In addition, no
modules are able to begin calculations until the system is completely configured.
Therefore, it is necessary for the entire system to have a state controller that dictates
whether calculations can begin. This is easily accomplished through a configuration
control sub interface in the top-level block and in each module.

6.4 Effect Block Microarchitectures

The effects modules, each one, execute an effect, modifying the original
signal. Each effect was implemented as a different module. As some effects are very

similar in their operation, several effect modules will use the same structure. For
instance, Echo and Flanging use a Delay configuration and implementation.

The effects blocks receive integer values as parameters, to execute the
specific operations they are supposed to. For the case of Echo, for instance, it
receives a 16-bit integer value, representing the amount of delay in milliseconds.
Therefore, those parameters produce a queue of registers, which are added back to
produce the output signal, with another parameter: the intensity of delay, a
fixed-point value that represents percentage of feedback.

In a similar way, Tremolo receives the amount of time that the effect should
be performed, as well as its intensity. In the case of Flanging, it receives only a
fixed-point value that represents percentage of feedback, to determine the intensity
of this effect.

The Distortion block loads a lookup table file to the BRAM, containing the
distorted values for all possible entries, calculated by inverse tangent. The table is
one to one mapped, so for each input sample, the effect produces an output sample,
after retrieving from memory.

Effects that needed to modify the signal in frequency domain weren'’t
implemented. To accomplish that, an FFT module would be needed to transform the
signal from the time domain to frequency domain. Then, after the modifying changes,
an IFFT would be needed to transform the signal back to time domain. This would
use too much space, so none of the effects is performed in frequency domain.

Then, using manipulation of signal amplitude, the original signal can be combined
with the chosen envelope, producing the desired output.

The minimum number of effect blocks for the first version of the system was
three. We considered this number could provide good combinations of results and a
proof of concept for our design. In the end, we designed and implemented four effect
modules for the system.

7. Implementation Evaluation

We started the implementation dividing the system in two parts: the signal
generator, the switching matrix, and the effect blocks.

For the effect blocks testing, the original Audio Pipeline structure was used.
The first effect block implemented was the Echo. It saves samples and adds them
later to other ones. The amount of samples stored to be added later depends on the

delay. The parameter passed to this module is used to establish how much samples
should be delayed and added later. This addition is represented by a percentage and
is passed as parameter.

The second block implemented was the Flanging. Very similar to the first one,
it was tested and performed well with a small issue: discontinuities generated by the
variation of the delay cause clipping sounds in the output. As discovered later, that
noise was added in the very beginning and amplified if the intensity of effect was set
as high value. The signal-noise relation in this case is not quite good. Therefore, as
tested and realized, to reduce the small, the intensity of the effect should not be too
high.

Then, Distortion was implemented. Firstly, we tried to implement
mathematical functions to produce a distorted output. All the calculation tried in
hardware didn’t show exciting results. Therefore, we decided to use a pre-loaded file
as lookup table for this module. Using the inverted tangent function, the input sample
produces an output one, found in the table. This method showed good results. The
file can be changed in a way that the intensity of distortion changes. The problem
with that is: every time we want a new configuration for this effect, we need to
reconfigure it, loading the different file to the BRAM.

At last, Tremolo was implemented. With variation in amplitude, we could
achieve a good example of this effect. The duration of variation is set by a
parameter, in the same way that Echo does. The other parameter sets the intensity
of the effect, by determining the amount of amplitude variation. Again, if set to a too
high value, as the signal-noise relation is not excellent, some clipping sounds can be
heard in the output.

In that way, we programmed all the modules for the system. We improved
modules and fixed problems that we were finding, as we advanced in the project.
The signal generator, envelope generator, and effects blocks were, finally, integrated
into a single synthesizer unit. In addition, the order of the modules in the pipeline has
been made reprogrammable.

The most difficult part of the implementation was none of the system modules
as showed above, but the Sce-Mi interfaces and the BRAM. Initially all of the
harmonic configuration data was sent in a single struct in a single Sce-Mi call. The
resulting Sce-Mi message was 9971 bits long. Sce-Mi was unable to handle
messages of this length so packets were being dropped and communication with the
FPGA did not work. This issue was resolved by adjusting the configuration

architecture to only send one harmonic at a time and programing the harmonics
through 100 sequential calls. The BRAM produced two challenging problems, the
first of which was its inability to locate the initialization file through a relative path.
Thus, the LUT was initialized to zero and no data was generated. Second, the initial
design called for a LUT with a 19-bit address (for more accuracy). Unfortunately, the
BRAM on the FPGA was only able to address up to 16 bits. The resulting waveforms
were repeated triangles (the first 10% of a sin wave). This problem was resolved by
reducing the size of the BRAM. These issues made the final steps of the project
(porting to the FPGA) hard to complete. Although it was difficult and time consuming,
the system could be totally operated using the FPGA, at last.

The whole system is composed of 2,608 lines of code, 1,370 lines of BSV and
1,238 lines of C++ in addition to uncounted python code to generate the appropriate
BRAM initialization data and to generate c++ code to play “Karma Police”.

File Lines of Code
Synthesizer (Top) 292
Synthesizer Types (Type Declarations) | 228
Signal Generator 236
Envelope Generator 171
Flange 114
Echo 98
Tremolo 98
Distortion 69
SceMi Layer 89
Test Bench 1238
Total 2,608

The described system is large. It utilizes 29.8% of the Slice LUTs, 5.5% of the
Slice Registers, 2.2% of the F7 Muxes, 1.9% of the F8 Muxes, 6.7% of the BRAM,
28.9% of the DSP blocks. The bulk of this space was used by the BRAM for the
Signal Generator (27,328 LUTSs), the register file for the delay (27,611 LUTs), and
the Sce-Mi interface (13,140).

The critical path of our system is within the echo block. Data needs to be read
from the redfile, processed, and stored back into the regdfile. The path has a delay of
17.323 ns, 98.5% of which is routing delay.

The final synthesizer works beautifully. We were able to accomplish all of the
initial project goals including arbitrary waveform generation in real time. Because the
system is pipelined, the throughput is fixed by the throughput of the slowest block.
Because of its folded structure and the need for 100 harmonics, the signal generator
is able to produce a sample after ~ 100 clock cycles (it takes one cycle to load a note
but this is amortized over the length of the note). Because the system is clocked at
55.6 MHz the throughput of the system is 556k Samples per Second, well above the
44,100 samples per second needed to operate in real time. Pictured below are two
envelope shapes in addition to a sin wave, a square wave, and a saw-tooth
waveform formed by the signal generator.

x| poasinheEr w| 1,0

32-ba loat 0.5

+ | 0.0

L R
i g i 0.5
| - |-1.0

i i ' I ' i ' | ' i ' |

x fpgaviolinio w| 1.0
Mono, 44100Hz

32-bit tloat

e s

x| 1pgasinNcEr w| 1.0

32-bit float 0.5-

mmmlool SN N N SN SN N N

;0*'/\/\/\/\/\/\/\

| . |-1.0

x|fpgasquare w| 1.0
Mano, 44100Hz 1

32-bit float 0.8-

Muta Selo

0.5|650 : 0'5.670 : 0.5|690 : 0.5|710 : 0'5.730 : 0.5|750 : 0'5.770

x| tpgasawNoE w| 1.0
Mong, 44100Hz
32-bit float

Mute Soio
— .| 05
A
L R

’ N S N
NIENEEEN NN N AN

-1.0

8. Design Exploration

The size of the design appears to prevent it from incorporating multiple
channels (at most 3 channels might fit). However, this is not the case. The three
largest components, the sin LUT, the echo delay, and the Sce-Mi interface are
substantially larger than the rest of the system. Fortunately, all of these can be easily
addressed. The size of the sin LUT cannot be reduced arbitrarily without creating
distortion because a smaller LUT causes errors in the regions where the slope of the
sin wave is largest and thus the amplitude changes the most between “samples”.
However, it is likely possible to reduce its size a decent amount without much
problem because the sin wave is only accurate to 16 bits anyways. In addition, this
LUT can be reused by every channel in the system and thus does not need to be
replicated. While this would cost throughput due to the limited BRAM access, our
present design has more then enough throughput.

In addition, the size of the echo delay could be greatly reduced (and the
critical path improved) by using a BRAM for sample storage instead of a redfile. The
inputs and outputs of BRAMs are pipelined and optimized for large data storage so
the critical path delay would be greatly reduced and the size would shrink. In
addition, echoes with second long delays are not particularly interesting as an audio
effect. Therefore the number of samples stored could be reduced to 2215 and cut the
size in half.

Finally, the size of the Sce-Mi interface could be greatly reduced by continuing
to reduce the size of the messages being passed and using multiple calls. A clever
method would be to use a struct with one variable indicating the parameter to
change and another containing the new data value. This would create a very
lightweight, expandable, Sce-Mi interface.

With these changes, the size of the synth could probably be decreased by a
factor of three or more. The decreased critical path could enable increased folding to
reduce size even further.

9. Conclusion

The signal generator can produce waveforms with up to 100 reprogrammable
harmonics. For the effects blocks, instead of the first goal of three, we implemented
four: Echo, Flanging, Tremolo and Distortion. The Flanging and the Tremolo blocks,
because of non-ideal signal-noise relation, have clipping sounds on the output when
a too high value of feedback is used. However, considering the general purpose of
these modules, they all work as expected. Thus, the system was able to completely
and correctly operate as proposed. It was successful implemented on the FPGA.

This project could show the possibility of a digital synthesizer implemented in
hardware, embedded in an FPGA. Although it was more complex than expected
(most because of interface issues using Sce-Mi and BRAM), it can be said that the
main goal set in the beginning of the project was accomplished.

This proof-of-concept example of complex hardware system, therefore, shows
the power and advantages of using an FPGA to implement solutions to problems
from several fields of study.

