6.375 Final Report

Marcus Boorstin and Valerie Sarge

May 11, 2016

1 Project Goals

Our 6.375 final project was to emulate the Apollo Guidance Computer (AGC) on the FPGA.
The AGC is a relatively complex processor, so our main goal was to successfully implement
the full instruction set and pass a relatively complete verification suite. Such an emulator
should easily outperform the original in speed, size, and power draw, so we decided upon
10 million instructions-per-second as a reasonable loose target: this corresponds to a two-
order-of-magnitude increase in speed over the original. Additional ”stretch” goals included
making the processor cycle-accurate and implementing full interrupt and timer functionality
in order to run original guidance programs and perhaps even simulate a successful launch.

2 Background

2.1 History

The original Apollo Guidance Computer was conceived as a system to provide guidance,
navigation, and control for NASA’s Apollo moon missions. At its core was a processor
with a clock cycle of approximately 11 ps and a memory bank including 2048 16-bit words
of read/write memory and 36,684 words of read only memory (words were composed of
one parity bit, one sign bit, and 14 magnitude bits). The AGC used many cutting-edge
technologies; it was one of the first to use integrated circuits and pioneered the use of core
rope memory for ROM (read/write memory was still implemented as magnetic core). The
original weighed 70 pounds and drew 70 watts; an FPGA design can do much better.

In order to emulate an AGC, an FPGA-based system must also provide the surrounding
infrastructure, including memory and I/O channels. In addition to the distinction between
read-only and erasable memory, implementing the switched-bank architecture is complex
due to memory overlaps. Port management is a significant concern as well, with the need to
read three registers and an I/O channel to determine the correct bank as well as occasional
double reads and writes.

2.2 Assembly Language

There are 49 registers, each of which is distinct and some of which must be dealt with spe-
cially. (For example, some registers are incremented when read from, and while most registers

1

are 15 bits, the A, L, and Q registers have 16 bits for overflow detection and correction).
Likewise, the instruction set contains on the order of 50 distinct instructions, depending on
how special cases are counted. The basic instructions are laid out below. The argument of
the instruction, when present and an address, is referred to as K. Arithmetic is assumed to
be 1’s complement unless stated otherwise.

Instruction List: Basic Instructions
Jump after storing a return address in the Q register. Spe-
cial cases include INHINT, which disables interrupts; RE-
TC LINT, which resumes interrupts; and EXTEND, which
flags the next instruction as an extracode instead of a ba-
sic instruction.

TCF Jump to a location in fixed memory.
Stores the diminished absolute value of a location in
CCS erasable memory into the accumulator, then jumps up to

three instructions depending on the original value.
Double-precision AS; adds the contents of A L. and a pair
DAS of locations in erasable memory, then stores the result in
those erasable memory locations.

Double-precision; exchanges the values in the A,L register

DXCH pair with those in the K, K41 address pair.
LXCH Exchanges the value in the L register with the value at K.
XCH Exchanges the value of A with the value at K (in erasable
memory).
INCR Increments the value at the given address by 1.
AD Adds the value at the given memory address into A.
ADS Computes the sum of A and the value at the erasable
memory location K and stores it in both A and K.
MASK Bitwise ANDs the value at K into the accumulator.
CA Moves the contents of K to the accumulator.
oS Moves the 1’s complement of the contents of K into the
accumulator.
Copies the accumulator to memory and leaves a +1 or
TS -1 in the accumulator if there was positive or negative
overflow, respectively; otherwise, it leaves the accumulator
unchanged.
Causes the value at K to be added to the following in-
INDEX struction before decoding. However, if K is octal 017, this

instruction is treated as RESUME instead, which returns
from an interrupt-service routine.

Instruction List: Extracodes
READ Moves the contents of the given I/O channel into A.
WRITE Moves the contents of A into the given 1/O channel.
RAND iitwise ANDs the contents of the given I/O channel into
WAND Eei‘lcwise ANDs the contents of A into the given I/O chan-
ROR Bitwise ORs the contents of the given I/O channel into A.
WOR Bitwise ORs the contents of A into the given I/O channel.
RXOR iitwise XORs the contents of the given /O channel into
EDRUPT Meant for development and debugging only.
Double-precision CA; moves the contents of K,K+1 into
DCA . .
the A,L register pair.
Double-precision CS; moves the 1’s complement of K, K+1
DCS . . .
into the A L register pair.
QXCH Exchanges the value in the Q) register with the value at
AUG Increments a positive value or decrements a negative one.
DIM Decrements a positive value or increments a negative one.
Divides the DP contents of A and L, concatenated, by
DV the SP value in K. The quotient is stored in A and the
remainder in L.
MP Double-precision multiplies the value at A with the value
at K and stores the result in the AL register pair.
SU Subtracts the value at K from the accumulator.
Treating the values in A and K as unsigned (assuming a
MSU leading zero), subtract them and store the 1’s complement
difference in A.
BZF Jump to a location in fixed memory if the accumulator is
Zero.
Jump to a location in fixed memory if the accumulator is
BZMF .
Zero or negative.
INDEX Nearly identical to the basic version of INDEX, with the
exception that it will never be interpreted as RESUME.

Values stored in memory on the AGC are most commonly stored as single-precision (SP) or
double-precision (DP) values. An SP value consists of one leading sign bit and 14 magnitude
bits; it is interpreted as a 1’s complement value for arithmetic. A DP value consists of two
concatenated SP values, with the less-significant one being of lower magnitude. DP values
are also 1’s complement, but their SP components can occasionally have inconsistent signs,
something that the AGC has to be robust to. A small amount of unsigned arithmetic (this is
often referred to as 2’s complement, despite the fact that it cannot involve negative values)
also occurs, for example in the inputs to the MSU instruction. However, most arithmetic
instructions use 1’s complement. For the purpose of divides and multiplies, values are treated

as being between -1 and 1. Overflows are handled differently than in most modern computing;
a positive overflow wraps around to 40, while a negative overflow wraps around to -0.

2.3 Memory Map

The AGC has a very complicated memory layout. In general, it is broken up into read-
write (usually called ”erasable” and originally implemented as magnetic core memory) and
read-only (usually called ”fixed” and originally implemented as core rope memory) sections.
However, each section is broken up into banks which can be mapped into address space
using special registers. Erasable memory is broken into 8 256-word banks (E0-E8). Banks
EO, E1, and E2 are permanently available at octal addresses 0000g-1377g, but another bank
may be mapped into 1400s-17775 by an appropriate setting of the EB register (note, however,
that words at the very bottom of memory are actually registers). Similarly, fixed memory
is broken into 36 1024-word banks (labeled 00-43 in octal notation). Banks 02 and 03 are
permanently accessible at octal addresses 40003 — 77775, and another bank may be mapped
into 20005 — 3777g by an appropriate setting of the FB register. However, because only 5
bits of FB are designated to affect memory mapping, and there are 36, not 32, fixed banks,
a "superbank bit” (actually I/O channel 7) is used to select the upper 4 banks (the specific
addressing scheme actually provides for 40 banks but 4 were missing on the physical AGC).
Finally, the BB register mirrors the bank-selection bits of EB and FB, so that writing to it
updates the corresponding bits on EB and FB and vice versa.

3 Microarchitectural Description

3.1 Stages

The processor’s stages are represented as rules within an overarching module. Structurally,
multiple rules are required because, as seen above, many instructions involve complex mem-
ory access patterns (such as DAS, which must read two words from memory, read two registers,
perform a computation, write two words of memory, and write two registers). Because of
similar structural concerns, and because of very complicated control hazards (for instance,
INDEX can modify not just the target address but the opcode of the next instruction) and
data hazards (any instruction that writes to memory can change the EB, FB, and BB regis-
ters, affecting the source of data and instruction loads) we did not attempt to pipeline our
implementation. Hence no two rules in the processor run concurrently. FIFOs are used to
transfer information between stages, although they never hold more than one element and
essentially function as registers. Our stages are organized as follows:

» Fetch

Decode

J'—D P— —Dtherl
Decode a
Double Exec

I
DP Other DV
v v v
Writeback : Writeback

Double > Writeback Divide

Figure 1: Basic diagram of processor stages.

The fetch stage combinationally reads the Z register (the program counter) and then sends
a request to the instruction memory for the next instruction.

Decode catches the response. It handles interrupts if necessary (it is simpler to handle them
here than in fetch). It then performs an INDEX addition if required by the previous instruc-
tion (using the state register indexAddend) and decodes the 15 bit instruction into a larger
internal format. The first three bits are one portion of the opcode; the next two bits can
also be used to distinguish between instructions, and the extracode flag from the previous
instruction (using the state register isExtended) must be taken into account. Additionally,
I/0O instructions all have the same first three bits; three more identifying bits are needed to
distinguish between them.

Once the correct logical instruction is identified, the decode stage does some preliminary work
to prepare for execution. If memory, I/O channel, and/or register values will be needed for
execution, the stage determines their addresses from the instruction and sends appropriate
load requests to memory. The decoded instruction, along with flags indicating whether mem-
ory and register responses will need to be caught, is then passed to the next stage. Usually
the next stage is execute; however, if a double precision instruction (such as DXCH) is being
executed, the processor will first redirect to “DecodeDouble” to catch the first set of memory
responses (the lower words) and send requests for the upper words, and only then continue
on to execution.

The execution stage is the largest and most complex. Based on the given opcode, it deter-

mines and performs the correct operations on the any data received from memory. These
operations can involve a significant amount of arithmetic. Most of the arithmetic operations
performed, including multiplication (discussed in detail in section 3.2), are combinational;
however, divide is implemented as a multistage circular pipeline (section 3.3).

After results have been computed by execute they are committed to memory, registers, and
I/O channels. Most instructions proceed directly to the writeback stage as signals represent-
ing the values and target addresses of results. However, just as double precision instructions
need an extra stage to fetch their extra words from memory before execution, they also need
an extra stage (“WritebackDouble”) to write their extra words (multiplication also requires
this extra writeback stage). Writeback also sets the new Z register if it has not been explicitly
modified by a memory or register write.

In the particular case of the divide instruction (DIV) it is necessary to catch the response
of the divide module once division has finished in execution. Additionally, it is possible to
make the specific double-precision write for this instruction in one cycle by taking advantage
of the memory architecture. Thus a special rule (“WritebackDivide”) is used in place of the
standard writeback.

3.2 Multiplication

Of the arithmetic performed the most complex combinational operation is the multiply. This
is done by splitting each argument into three five-bit unsigned values, which are multiplied,
left-shifted appropriately, added, and then given the appropriate sign prior to returning, as
shown below:

SP a SPDb
a[14:10] a[9:5] a[4:0] b[14:10] b[9:5] b[4:0]

DP product

Figure 2: Description of multiplication.

3.3 Division

The sole non-combinational operation is performed by the division module, which performs
long division on a double precision dividend and an single precision divisor, producing an
exact quotient and remainder. Each cycle, it determines one more bit of the quotient; its
general function on unsigned values is described by the figure below. The sign of the quotient
is positive if the dividend and divisor have the same sign and negative otherwise, while the
sign of the remainder will always match the sign of the dividend:

DP a SPb
[|

o

v v

dividend[27:0] divisor[13:0]

=<,

quotient[13:0]

Divider

ﬁ
in
1:5

Y ¢

SP quotient SP remainder

Figure 3: Description of divider module.

3.4 Memory and 1I/0

As discussed above (section 2.3) the AGC has relatively complicated and interconnected
memory, registers, and /O channels. All registers are mapped into the bottom of memory;
the EB, FB, and BB registers control which banks of memory are accessible (and writing to
one modifies another!); I/O channels 1 and 2 are aliases for the L and Q registers respectively;
reading from the CYR, SR, CYL, and EDOP registers implicitly modifies them. Additionally, due
to the many complex instructions, our memory module must service many requests at once:
Fetch, Decode, and DecodeDouble can all request memory reads, their succeeding stages must
catch the resulting responses, and Exec, Writeback, WritebackDouble, and WritebackDivide
can all request memory writes. Finally, because we simulate the /O channels using SceMi

7

(section 4.2) rather than actually connecting our FPGA to physical devices, we must buffer
all I/O access so that I/O writes are visible to subsequent reads.

Thus, within our top level mkAGC module, we use two large modules, mkAGCMemory and
mkAGCIO, to contain most of our state. mkAGCMemory maintains a large BRAM that holds
both erasable and read-only memory, and a vector of registers. It performs memory address
translation (mapping logical addresses to physical locations based on the contents of the
bank selection registers as well as translating low memory addresses to register numbers) and
exposes interfaces for instruction and data access (in simulation we used dual-port BRAMs,
so it was convenient to dedicate one port for instructions and one for data, but the FPGAs
we synthesized our design against do not seem compatible with dual-port BRAMs so this
distinction is less meaningful). It also exposes several smaller functions like timers (which
are just auto-incrementing registers). mkAGCIO is at its core a small secondary BRAM that
buffers I/O channels. It then exposes internal facing interfaces for handling requests from
the decode and writeback stages, and external facing interfaces that are effectively connected
directly to SceMi. It communicates directly with mkAGCMemory to access state such as the L
and Q registers and the superbank bit.

4 Testbench Architecture

4.1 Testing Considerations

Our goals when planning our testing were twofold: we wanted to confirm that our imple-
mentation of the AGC language was correct, and we wanted to try to run actual Apollo-era
software on our design. The first goal in isolation suggests a relatively simple testing en-
vironment: build a design and write detailed unit tests that send a pass/fail signal over
SceMi. However, the second goal requires much more complicated architecture. Not only
do the subsidiary parts of our design, such as timing and interrupts, have to be correct, but
we must also have some way of mocking the peripherals that the original software expects.
Moreover, as long as we're running the actual software, it would be nice to try running an
actual simulation of the Apollo capsule. These considerations led to the following design.

4.2 Testbench Architecture

The core of our testing architecture is a C++ testbench running on the host machine. On
startup, it initializes the SceMi link and then uses it to transfer the target AGC binary
to BRAM (in simulation we can also initialize the memory directly from a VMH file, but
this lets us run as many programs as we want on the FPGA without regenerating the
bitstream). Once finished, it waits for a TCP connection (port 19797) from third-party
software that emulates the various peripherals and hardware (joysticks, gyroscope displays,
etc.) surrounding the physical AGC, and once connected it then sends a start signal over
SceMi to the AGC.! The testbench then monitors both connections (using separate threads)
and translates data between the two formats (over SceMi we just transfer a one-byte channel
number and one word of data, which needs to be converted to and from the special protocol

thttp:/ /www.ibiblio.org/apollo/yaTelemetry.html#LM_Simulator_by_Stephan_Hotto

used by LM Simulator). This gave us the flexibility to easily run a number of programs such
as a pre-written validation suite.? We also successfully ran a number of custom programs,
as discussed below.

5 Implementation Evaluation

Our implementation met all of the fundamental goals that we set out. Our AGC emulator
successfully passes the validation suite, both in simulation and on the FPGA. In addition,
we recently added interrupt and timer functionality (neither of which are explicitly tested in
the validation suite). While we were unable to get the Luminary program running, largely
due to the difficulty of debugging the processor while running self-modifying code, we did
write a demo with a fraction of the functionality of Luminary (namely controlling spacecraft
thrusters) that we will show during our presentation. Our final synthesized design meets
timing at a 50MHz clock speed and takes between four and twenty cycles to complete an
instruction for a total top speed of 12.5 million instructions per second; this shows more
than a two-order of magnitude improvement over the original and a full 25% over our target.
With regard to area, our design used 10.69% of slice LUTs, 2.95% of slice registers, and
4.46% of BRAM tiles.

We did end up with a somewhat different architecture than we initially planned, primar-
ily because of the extra complexity presented by the double loads and stores. Getting a
pipelined design to work in the time that we had was not very feasible. However, we did not
ever have to fully overhaul our design.

We encountered significant challenges in moving our design from simulation to synthesis.
Soon after we successfully passed the verification suite in simulation, we attempted to syn-
thesize our design. Though it passed timing at 50MHz, we discovered that it did not pass the
verification suite, and traced the problem to zeroes being read from one port of the BRAM.
Due to a quirk of the Virtex FPGAs, it appears to be difficult to synthesize multiple-port
BRAMs, as we were doing; similar issues to ours are known to occur when reading from
multiple-port BRAMs with more than one clock. We resolved the problem by restructuring
the way that we handled memory requests to work with a single port BRAM, after which
our design synthesized and passed the verification suite.

In total, our implementation involved 3303 lines of Bluespec code in addition to supporting
testbenches and assembly code for debugging.

6 Design Exploration

Given more time, there are several directions for design exploration that we would like to
pursue. First, with a little more debugging, it might be possible to run Luminary and Colos-
sus; this would ensure complete fidelity to the original AGC, as well as making an excellent
demonstration.

Additionally, our design currently does not take full advantage of the ability of the FPGA to

Zhttps://github.com /rburkey2005 /virtualage/tree /master/Validation

parallelize operations, as the processor is not pipelined. A two-stage pipeline would signifi-
cantly improve instructions per second, and even if the processor itself is not pipelined, cre-
ating pipelined multiplication and division modules could substantially decrease the needed
cycle time.

7 Conclusion

Thus, we successfully implemented a processor running Apollo Guidance Computer byte
code in Bluespec, synthesized it for an FPGA, passed a thorough verification suite, and were
able to use it to simulate flying an actual Apollo space capsule.

10

