High Speed Video
Compression/Decompression Pipeline

Final Report
Ariana Eisenstein, Yuan Cao

Project Objective

We have implemented a bi-directional PC to DRAM Memory pipeline that performs
compression on data moving from the PC to DRAM and decompression on data moving
from DRAM to PC as a proof of concept of Data Compression algorithm tests within this
system. The PC transfers data to the FPGA using a SceMi connection, with an associated
c++ test script to transfer the video data.

We have implemented an image compression and decompression algorithm on a
frame by frame basis, as image compression is much less complex and requires less
memory than video coding. For this project, we use the Discrete Wavelet Transform (DWT)
based compression algorithm [1]. We want to use the DWT because of its superior
performance and better compression ratio for most image data, compared to the Discrete
Cosine Transform (DCT), which can give rise to blocky artifacts. The downside is that more
computation power is required to perform the transform, and hence hardware acceleration
is necessary to compress/decompress in real time.

In order to decrease the total number of bits to be transferred, we will be using
Entropy encoding of the DWT coefficients. Entropy coding can be either lossless or lossy,
depending on algorithm selection. For this application, we chose a lossless algorithm as we
want to restrict our loss to thresholding on the DWT coefficients themselves. For our
implementation, we have implemented the Huffman encoding algorithm.

We have a throughput of one sample per cycle. A hardware accelerated Discrete
Wavelet Transform as used for compression has be explored by [2,3].

Background

Video Data can be the biggest of big data. As standard move to higher definition
with larger pixel counts and real-time frame rates of 30-60 frames per second, the speed of
processing video data must increase. In order to achieve the high speed data transfer of
each video frame, compression algorithms are employed to decrease the amount of data
needed to be transferred, allowing the high frame rates to be maintained. In compressing
video data, a tradeoff is created. While less data is being transferred, a compression or

decompression must be done to recreate the correct pixels. Thus, computationally complex
compression and decompression need to operate at high frequency.

Increased speed of video compression and decompression is one of the focuses of
the the Energy Efficient Multimedia Group (EEMS). In order to better test developed
algorithms, Ariana has helped develop a system on an FPGA VC707 platform for testing of
ASICs that implement energy efficient algorithms. The system currently has interfaces to a
1080p@92 FPS Camera, HDMI Display, UART Communication bus, and SD Card Reader
and well as a connection to the provided DDR3. The system currently works best as a
standalone test as we do not have a fast enough interface to the PC (UART is too slow, SD
Card is too slow and limited in space). Currently, EEMS is experimenting with different
methods of transfer to the FPGA from the PC and has developed a DRAM arbitration
module that time multiplexes between three components (camera, detector, and display)
with a data rate of 512 bits / cycle at 200 MHz. EEMS would like these two interfaces to
communicate in order to both run the Benchmark Datasets on the physical hardware or
RTL and test the implementations of these algorithms, using data gathered and processed
by our system.

High-Level Design

The pipeline from PC input to DRAM is as follows: an Async Fifo, a Byte
Deserializer, the Decompression modules, a Pixel Deserializer, and a FIFO. Oppositely, for
the DRAM to Ethernet Pipeline: a FIFO, a Pixel Serializer, the Compression modules, and
an Async Fifo. An overall block diagram of this system is shown in Figure 1. Note the
separation of clock domains as shown by the dashed line.

1 Byle De- compression 512 bits

Modules

Scel SceMi Dram DDR3
Wrapper Wrapper Cram
1 Byte 512 bits
¥ Comprassion

Modules

PC

Sceli Clack:
50 MHz

Figure 1: System Block Diagram:
This diagram shows the overall block diagram of the system. 1 Byte of data enters the system from
the external SceMi modules and 512 bits exit system to DRAM.

The specific components of the Compression and Decompression modules are
shown in Figure 2 and Figure 3. As shown in the figures, we will be doing three
compressions / decompressions in parallel, one for each color channel RGB. These can be
done in series using a super-folded architecture depending on size and timing results. The
compression is done by first taking the Discrete Wavelet Transform (DWT) of each frameof
pixels to get the DWT coefficients. We will then use thresholding to keep all coefficients
above a desired value. These remaining coefficients will be compressed and stored using
Huffman compression. The decompression works in the opposite manner, recreating the
coefficients from the Huffman table and then restructuring the pixels with the Inverse DWT.

Huffman ,
Coefficients
Table
red Pnixﬂl Huffman __ i ~ Discrete B red\pixel
< Encodin -+ Thresholding [Wavelet -+ <
9 Transform 8
[Discrete i ;
cpixal graan cpooel Huffman . green pixal pixel
- E\. A Encodin + Thresholding | Wavelet +——g S
9 Transform 8 24
blue cpixel Huffman) Discrete blue pixel
S . -+ Thresholding |- Wavelet - A
Encoding
Transform 8

Figure 2: Compression Block Diagram:
This diagram shows a detail of the modules used in the compression. A Discrete Wavelet Transform,
a Threshold, and Huffman Encoding are the modules used for compression.

Huffrman ,
Coefficients
Table
Inverse
redgpixel | Huffman _ Discrete red pixel
* Decoding Wav?let N
Transform
Inverse
cemel green\cpi:el - Huffman . Discrete green pixel pixel
A N Decoding Wavelet N Py
Transform
Inverse
blue cpixel Huffman n Discrete blue pixel
N Decoding Wavelet 3
Transform

Figure 3: Decompression Block Diagram:
This diagram shows a detail of the modules used in the decompression. A Huffman Decoding and
Inverse Discrete Wavelet Transform are the modules used for compression. Three decompressions
will be done in parallel for each color channel, in accordance with our software model.

Test Plan

Our plan for testing the system is as follows. Each individual module will be tested using
a Bluesim testbench to ensure its functionality. For the serializers and deserializers, this is
simply checking that the input data is the same as the output data, either serialized or
deserialized with a final test that give identical input and output when the two are connected
together. For the compression and decompression, we will be using the software
implementation of either the compression or decompression algorithm to generate test data for
both modules. While floating to fixed point errors can cause slight differences between the two
implementations, a similar result will suffice. Initially, we will test the algorithms using only gray
scale data. The final test for the compression and decompression modules will be sending an
image through the compression, sending the compressed image through the decompression
and viewing the result. Data throughput and delay will be characterized on the FPGA platform
using a SceMi interface. If the results don’t meet the timing specs, we will add additional
pipelining to the algorithms as well as add a second frame of delay if necessary. If the results
don’t meet the space specifications, we will create a more folded design that reuses the same
hardware for several tasks. If the results do not meet our desired performance, we will return to
tuning the algorithm parameters in software, and then modifying our hardware accordingly.

Microarchitectural Description

Discrete Wavelet Transform module

In this module, we take in a two-dimensional array of sample points (one color component) and
perform DWT using a given set of parameters. We choose CDF97 filter which is standard in
JPEG2000 standard and proven to give good results on a variety of images.

The transformation on a 1-D array is described by the following illustration, which is also known
as “Lifting scheme”.

Just be saredint s cwnp esition
a=1.586 # O

h=-0.052 *
o= 0883 (T
d= 0.444

BHE ®E

Y H B EEBE®E
[- N

Figure 4
Left: Performing DWT on an 1-D array using lifting scheme. The given coefficients are for CDF97
biorthogonal wavelet. Right: For input of finite size, symmetric boundary extension demands that some of
the coefficients must be doubled in order to be mathematically reversible.

The basic operations required in implementing this 1-D DWT algorithm is calculating the vector
multiplication/addition

ylil=x[i+a* (X, [il+x[i]),

where y[i], x[i] and a are all fixed-point numbers. In order to reach the throughput goal, we must
transform multiple samples in each cycle. However, full parallelism is impossible since it implies
an array of multiplier/adders with size comparable to the line width (>1000) this will put a large
demand on required hardware resources. Therefore we use a serialized structure; chunks of
size B is fed into the pipeline in each cycle, where B is 2~16 defines the required
multiplier/adder array size.

Transformation on the second dimension is independent from the first dimension. The resources
required to perform DWT on the entire image in parallel is unrealistic (~1 million multiplier),

therefore we perform the second dimension on a line-by-line basis. To avoid storing the entire
image in a large buffer, the so-called “Line-based lifting” technique can be used.

nl . ORIGINAL
Ongu'nn_“ 2 High Low 128 129,125, 64, 65, TRAHSFORM COEFFICIENT S
Lift Lift 123, 124, 967, 4.5,
Figure 5

Left:lllustration of line-based lifting technique. Right: Example of image before DWT transformation and
after performing a 4-level 2-D DWT transformation.

At initialization, three lines are read in and transformed. At this point no results are obtained.
After this, every two lines are transformed, and two new lines of results from previous lines are
obtained. This process is repeated until every line is transformed. In the actual implementation,
we fully decouple between different stages of the pipeline using large FIFOs, so it does not
need to explicitly define this behavior in the hardware.

Usually, one step of DWT transform is not enough, since the upper-left corner of the
transformed image is a low-pass filtered version of the original image and the compression ratio
might be still low. Therefore, 2-D DWT of smaller and smaller sizes are usually performed
repeatedly on the upper-left corner of the image. In our implementation several DWT modules of
exponentially smaller sizes are cascaded to provide this functionality.

The inverse transform is pretty much the same as the forward transform module, except that the

order that the coefficients are applied onto the data is reversed. All of the hardware described
above are simply copied and modified. In hardware the effective area is basically doubled.

Huffman Compression Module

This module takes the DWT coefficients produced by the DWT module and encodes them in
less bits using a the Huffman Compression scheme. Huffman operates by taking the most

prevalent coefficients and stores them in smaller bit representations, resulting in a total
decrease of the bytes to store the data.

This module will access and maintain an Encoding table that will maintain the mapping from
filter coefficient to encoded value. This table will maintain a static encoding based on the
simulated performance of our DWT algorithm on test images.

The initial Encoding table simply encodes the integer values of the coefficients. The JPEG
Standard operates using integers, so the fraction portion of the FixedPoint coefficients is thrown
away. This initially compression scheme works well as the largest numbers of coefficients are
primarily centered around zero and as such can be represented in few bits. Figure 7 shows a
histogram of the DWT integer coefficients of a test image created using our reference code.

Histogram of DWT Coeff Values
T T T

108

105 1

Number of Coeffs
5
T

| . mrﬂﬂ Hjmeﬂm 1

-10 0 10 50

Coeff Value (Integer)

Figure 7: Histogram of DWT Integer Coefficients:
This histogram shows the distribution of DWT integer coefficients in a test image. Notice the
quantities is a log scale. We have significantly more zero coefficients, our smallest encoded word.

Additionally, from this table we can see that the majority of our components are between [-4,3].
From this information, we can generate the Huffman encoding tree shown in Figure 8. All values
not stored in this tree will be encoded as a concatenation of 5b11111, and the 7 most
significant bits of the coefficient, as we do not see coefficient values greater than 128.

Figure 8: Base Huffman Tree:
This tree shows the basic Huffman encoding for the eight most common values for the DWT
coefficients. The more frequent coefficients are represented using the shortest bit representation.
The trailing node with no value associated is the position of the out of table values.

In order to build this tree in hardware, we will use the coefficient as the comparator for a
lookup table. That table will output either the encoded value or in the case of an out of
table value the 5’b11111 to be concatenated. A block diagram of this module is shown
below:

L —
YEoma oaw msoan mn an wa
| o e e e

111100 —.. {Encoding, DWT Coeff}
a0l Encoding /% *

als] ————— P
Lo . Encoding

2 B3 RD
.

Encadin Encoded Bit E!-ﬂg

. Buffer

|
| % b
|
|
|
|
f e
|
|
|
T

=
g

Huffman Decompression Module

The huffman decompression module takes the compressed encoded data and transforms them
to 16-bit integer coefficients. In order to accomplish this, this module must have knowledge of
the same Huffman encoding tree the compression module used. This module will store
incoming bits until it matches an entry in the lookup table. When an entry is matched, the stored
bits are emptied. We maintain a count of the number of bits stored in order to see the stored

leading zeros. A block diagram of the module is shown below. Different schemes can be
explored for the table compare to reduce resources used.

Qut of Table Coeff Bits
+ | Encoded Bits Encoding
Byte | Encoded Bit > Table
Buffer
Compare
I Mark Invalid

6'b111111

Implementation Detail

DWT module

The main consideration in implementing this module is to balance between throughput and
hardware resources. Each line in the image has ~1000 samples. If one full line is fed into the
pipeline in a cycle, the input vector would be as long as 32k bit and will be impossible to
synthesize in FPGA. Therefore, each line is serialized into blocks of 2~16 samples and fed into
the pipeline in multiple cycles.

As we mentioned before, DWT is performed on both dimensions. Therefore we will first talk
about transformation in the first dimension (on each line), and then the transformation in the
second dimensions (on all the lines).

DWT1D module

The following block diagram describes the microarchitecture of this module. It is an elastic
pipeline with 4 stages that perform multiply-add operation and one scaling stage which only
performs multiplication.

ST.EQ e_1 51 ufifio Stage_2

i
i
fifio_history it : Coef b S2GAVE
[1] . l
i
MLl D:[I_' hbualt-
Adder i i Adder

——[[

s1fifo ! s 2fifo
ectrh®. WSS o MG
! '
Stage_3 siuflo | Stage_4 i
Coef_c [H:I:DL Cuif_d '

1

sdfifa

s3fifo

+1 counter

| coel_scale —

o Scale
| Veclor#(B, WSampla)

Scale
1/enal_scale - ofife

Each lifting procedure consists of four multiply-add stages and one scaling stage. Because of
the structure of the lifting network, each stage actually depends on previous two stages. This
fact poses a difficulty in decoupling between different stages and makes the pipeline inefficient.
Therefore we insert dummy FIFOs that simply pass on the values to the next stage.

S1 S2 S3 5S4 Sc S1 S2 S3 S4 Sc

@0 x
@ no xi
@1 x
@h 3

(1) Original lifting scheme

dummy buffers

Another difficulty we encountered in designing this module is that after serialization of input data
into blocks, the calculation of one block is not only dependent on itself, but also on the previous
or next block depending on the stage we are talking about. For example, in order to compute

10

the first block of Stage1, we need both the first and the second block of input. This means that
we cannot simply deque the input FIFO. Instead, we store the dequeued element in a “history”
buffer for the calculation of the next block. The same idea is implemented in every stage except
the output stage, and the details are slightly different for odd and even stages as shown in the
block diagram.

The throughput of this microarchitecture is determined by block size B. Since it is fully pipelined,
the module takes in one block in each cycle and the latency from the input to the output of the
first block is a few cycles at most. The throughput in ideal case is equal to B samples per cycle,
which is 400MSample/s when running at 50MHz and B=8. This is more than enough for our
throughput goal.

Synthesis result

We did a synthesis test on this module using B=8 samples/block, each sample is
FixedPoint#(16,16), and the hierarchical utilization after place and route gives 6,387 Slice LUT
and 3,880 Slice Register used. The functionality correctness has been tested on FPGA
successfully using an input size of 2,048 samples.

DWT2D module

Based on the DWT1D module described above, we designed the full 2-dimensional DWT
pipeline. Unlike in DWT1D where raw input is chunked into blocks, in DWT2D we process the
output from DWT1D in a line-by-line basis. The block diagram is shown below.

gignal coel_a
/i W) l
Vector#(B,WSample) Vector#B, SE_TDIEr s1fifal0] Stage1
— . DWTID Mult-
Add [|
e, w
Distribubor 31fia1) =
— gl coef b 2
(=]
|
s2fifol0] L
Mult _StageE
Add
s2fifo1] ‘Vector#{B,\WSampla)

Nl CoeT G LT

s3fifa]0] l
B s3fifo o Stage3
s 1 EN B Sy e
s3fife[1]
2
it
L]
}

Diigtrikulor %
— 1 Sl coal_d ﬁ T
[s ﬁ 1/s
sAfifa]0] X
o wae | Staged l
,' ot Stage_sc
sdfifo]1] o [——

11

The fundamental algorithm is the same as the lifting scheme used for 1-D transform, also with
dummy buffers for decoupling between stages. As in the 1-D case, the transformation of each
line is dependent on the previous line AND the next line. Therefore, it is necessary to store full
lines in the FIFOs between stages. This requires a larger amount of buffer size than what can
be handled by normal FIFOs, so we utilize BRAMs on the FPGA that can store up to ~Mb of
data. The Bluespec module mkSizedBRAMFIFO is very useful for doing this for us. Since the
width of RAM blocks are limited (36 bits), to synthesize a wide and shallow FIFO with BRAM will
waste a lot of spaces inside the blocks. Therefore the serialization plays an important role in this
module. For B=8 and FIFO depth of 512 (holds a maximum line width of 2,048 samples), each
‘long” FIFO in the block diagram takes 7 RAM36 blocks on FPGA.

Because the module as a whole is now fully pipelined, the throughput is in principle one block
per cycle. In simulation, doing 256 consecutive transformation blocks took 293 cycle, where the
extra cycles account for the initial latency and some performance loss between images where
the pipeline needs to be partially flushed. The latency of a DWT2D transformation is high
because the first line of output can be obtained only after the first 5 lines of input are processed.

Synthesis result

The full DWT2D module with B=8, max line width=2048 samples, was synthesized and place &
routed for FPGA. The utilization report gives 20789 Slice LUTs, 9988 Slice registers, 102
RAM36 and 10 RAM18 blocks used. The module is successfully tested on actual FPGA platform
with maximum 2,048x2,048 samples input.

Multi-Level DWT2D Module

In order to enhance the compression performance, usually one level of DWT transform is
enough, because 4 of the image contains the low pass filtered image and the coefficients are
still relatively large. Therefore, in software implementations of the DWT-based compression
algorithms such as that used in JPEG2000 standard, the LL subband (i.e. the upper-left corner
that is low-pass filtered) is transformed again and again repeatedly for 4-6 levels to achieve
appreciable compression ratio.

In this project since we are going to eventually synthesize the design on hardware which has
limited resource, we have to limit the transformation level to 3 if we do not use a folded design
which we think cannot meet the throughput requirement. This would mean that after
transformation, only 1/64 of the entire image will be the low-pass filtered and downsampled
original image, which contains the largest coefficients. The rest are all high-frequency
components that have relatively small amplitudes.

The main challenge in implementing this part is how to avoid buffering a full frame of image,
which is impossible to accomplish in the BRAM of an FPGA. As explained before, low-pass
components and high-pass components always come out of the transformation module
simultaneously, and in our implementation they are arranged in an interleaved manner. This
behavior is illustrated below.

12

From left to right, top to bottom, they are the (1) original image, (2) output from the 1st level
DWT2D module, (3) from the 2nd level and (4) from the 3rd level DWT2D module. This means
that when feeding the low-frequency output from the first level to the second level, all
high-frequency components must be buffered in the pipeline while waiting for the transformed
result to come out from the second level. When passing from the second level to the third level,
both HF component from the second stage and from the first stage must be stored. The
required buffer grows exponentially with the number levels. This is another reason why we limit

ourselves to 3 level transformation.

The block diagram of assembling DWT2D modules into a multi-level module (3 levels as shown)

is shown below.

DWT2D

Vector#(B, WSample)| DWT2D LF
N
HF

N/2

LF

DWT2D

BRAM FIFO

16 lines capacity

512kbit

N/4

BRAM FIFO
16 lines capacity
912khit

ofifo

Vectorf#i(B, WSample)

13

Huffman module

When building the huffman modules in hardware, the goal is create highly pipelined
compression and decompression, such that the coefficients can be transferred from the DWT2D
to the PC output and the encoded values can be transferred to the DWT2D quickly and be
made ready for both interfaces. These modules aim to take low area on the FPGA so many
instances can be created for a highly parallelized design that can compress and decompress
many values at once.

We will discuss first the Huffman Encoding and then the Huffman decoding. These two schemes

will use the tree generated above.

Encoder module

The following block diagram describes the microarchitecture of this module.

Encoded

Coeff In Circle Buffer Byte Out
3 " Value Vector — "
FIFO FIEO (EHR) FIFO
_ Write Read
Encoding Index Index

Table

The vectors of coefficients (from the DWT modules) are stored in a FIFO and then compared to
the table of encodings (generated in software). This table has been isolated from the
implementation of the module so we can easily update the table based on need of our
application. Each sample input to this table outputs a data structure containing the size of the
encoded value, the encoded value, and the coeff (for use in the out of table case) to a second
FIFO.

The encoded values are read from the FIFO if all bits of the encoded value can be stored in the
circle buffer starting at the location pointed to by the write index. The circle buffer is a bit buffer
that is made with EHRs which allow us to perform both read and write operations on the buffer
in the same cycle without conflicts. We prioritize writes over reads. Each of these EHRs
contains Maybe types, so we can quickly determine whether the data at each location is valid.

The circle buffer is read at a byte starting at the location pointed to by the read index each cycle

given that there is at least one byte to be read. If at the end of the transform less than a byte
remains in the buffer, encoder will pad the byte with zeros for a final complete byte.

14

We chose to optimize for speed and high throughput, thus use an architecture with higher
memory and area utilization. A slower implementation with full serialization of the coefficients
has been implemented and can be used to decrease area costs.

Decoder module

In order to eliminate the external serialization and deserialization, we are implementing the
following architecture. The decoder takes in the stream of encoded values in byte by byte
fashion. Similar to the encoder module, these bytes are stored in a circle buffer starting at the
write index, provided there is space to write in the buffer. The circle buffer is constructed in the
same manner as in the encoder. The decoder checks through the 6 oldest bits of the circle
buffer to a match in the encoding table by checking through the read index through the read
index + 6. When a match is found within these 6 bits, the bits that match are marked Invalid and
the coefficient associated is sent to a deserializer to create the vector of coefficients expected
by the DWT. If the match is for the out of table value, the decoder extracts the next 6+N bits,
buffer locations read index + 6 to read index + 6 + N, where N is the size of coefficient, to
determine the coefficient. All bit location read are marked as Invalid. A block diagram of this
module is shown below:

Byte In .| Circle Buffer Coeff Out
FIFO (EHR) FIFO

3 & 3

Write Read Read

Index || Index || Index + 6 Encoding
Table

The decoder seems to be the bottleneck of the whole pipeline, as the encoded tokens have
variable length and one sample at most can be output from the pipeline in each cycle. Since the
utilization of this module is pretty low, we think this problem might be able to be partially
alleviated by raising the clock frequency.

Testing

We constructed a test pipeline as DWT->Encoder->Decoder->IDWT to test the functionality
correctness. Since there is a quantization step between DWT and Encoder, some information is
lost and the output is only similar but not exactly the same as input. We tested this pipeline in
small scale (16x16 samples) with simulation and the algorithms described above are proven to
work.

15

DRAM module

Memory management is an important factor in our design. The memory must store the
decompressed data, for both use by other locations as well as for sending back to the PC.
Currently, our memory implementation simply stores the pixels from the IDWT and sends them
to the DWT.

Synthesis result

We synthesized the basic SceMi to DRAM module including associated C++ test bench.
Utilization is 32499 LUTs, 36881 Registers, and no on chip BRAM memory. As most of the
utilization will be expanded in the inclusion of the full pipeline, this is acceptable. The modules
have been implemented in FPGA and the testbench passes.

A challenge in the DRAM Implementation is that the DRAM controller dropped requests
unexpectedly when interfacing with SceMi. By using the staff provided controller that adds an
additional guard to the controller preventing request overflow, we were able to write and read
the same data.

Simulation Results

We have run two simulation tests. Both tests run on the following test structure:

A
Image Threshold =
In = DWT = Scramble —~ +Encoder Decoder =~ IDWT H-
C DRAM
Image || | L Un- L L]
Out IDWT Seramble Decoder Encoder DWT
PC (MATLAB) FPGA

For reference, input images will be denoted as A; images compressed by the MATLAB
implementation will be denoted as B; and images compressed by the FPGA implementation will
be denoted as C. This is to distinguish the lossiness of the software versus hardware. Typical
use case will not directly follow this path.

Our first simulation test tests with a black and white image of 256x256
Initial Image (Monochrome, padded to be 256x256) (A):

16

Very similar to our initial image.

Compressed by MATLAB and FPGA (C):

As the algorithm is not lossless, we see noise on some of the edges. The final result is within
our expectation.

Our second simulation test tests with a color image of 512x512. This compression is lossy in
that only 8 MSBs out of the 12-bit coefficients are transmitted, so that the compression ratio is
greatly enhanced. The compression ratio for this image is 0.23 compared with raw RGB 8-bit
image. Visually there are tiny differences that are visible, but overall the quality loss is very little.

17

Initial Image (RGB, padded to be 512x512) (A):

Compressed by MATLAB only (B):

Compressed by MATLAB and FPGA (C):

18

Image C gained some extra graininess because it was lossily decompressed and compressed
twice.

Implementation Results

Utilization

Our full pipeline for 1024x1024 black and white images utilizes 87733 LUTs of 303600 with a
utilization of 28.83%, 40997 Registers of 607200 for a utilization of 6.75%, and 296 Block Ram
Tiles of 1030 for a utilization of 28.73%.

Our full pipeline for 512x512 color images utilizes 87722 LUTs of 303600 with a utilization of
28.89%, 40703 Registers of 607200 for a utilization of 6.70%, and 246 Block Ram Tiles of 1030
for a utilization of 28.88%.

Testing Results

Using the same testing scheme described above, but now using the physical FPGA and
1024x1024 DWT, we generated the following images.

Initial Image (Monochrome, padded to be 1024x1024) (A):

Compressed by MATLAB only (B):

19

We see little noise in the image because the transformation itself is lossless and the only loss
come from the quantization, which has 12-bit resolution.

Using the same testing scheme described above, but now using the physical FPGA and
512x512 DWT and lossy transformation, we generated the following images.

Initial Image (Color, padded to be 512x512) (A):

20

Compressed by MATLAB only (B):

Compressed by MATLAB and FPGA (C):

21

Timing and Throughput

Our fully-pipelined structure should achieve a 1 Sample/cycle performance. From simulation and
FPGA on-board test this is indeed the case: for 256x256 monochrome image which has 65,536
samples, the pipeline takes 88,238 cycles to complete decoding and storing into DRAM. For
512x512 RGB color image which has 786,432 samples, it takes 855,499 cycles to complete.
The ratio approaches one when more samples are processed continuously. The extra cycles
are mainly attributed to the delay of the multi-level DWT module and the delay is exponential
with the number of levels. For 3-level as we implemented, this delay corresponds to about 40
lines of image.

Even for a 512x512 color image, the compression/decompression finishes in less than 1M
cycles which takes ~0.02s @ 50MHz, in which time ~2Mb of data is fed into the pipeline. This
means that our throughput will be limited by the SceMi interface if we test the pipeline in real
time. Therefore we pre-store the compressed test-image in FPGA BRAM using SceMi datalink,
fire a start signal to the pipeline, and count the cycles from the start signal. The modified test
structure is shown below.

22

| Start

A% e DWT 4

In

Scramble ~ Encoder

C

Imagea
out |1 IDWT

bi—|
Scramble

Uri-
n = Decoder

BRAM
Buffer

Decoder

=

IDWT

Counter @

PC (MATLAB)

BRAM
Buffer

Encodar

B

DWT

FPGA

DRAM

In this part since we need to buffer the compressed image data, we need two large FIFOs of
4Mb each, which is the largest size the FPGA would allow. This limits our test to 512x512 color

image. In this part of the test the synthesis on FPGA gives a utilization of 89,048 LUTs (29.33%)
and 758 BRAMSs (73.59%).

Summary

In summary, we have implemented a video compression/decompression that is fully-pipelined
and synthesizable on a FPGA. The performance is summarized in the following table.

Clock frequency 50 MHz
Throughput 50 MSPS
Max. Resolution Up to 2048x2048
Utilization ~88k LUT, 41k Reg, 300 BRAM
Compression Down to 0.23
Ratio
Lines of codes 2,620 BSV
126 C++
391 MATLAB

23

Challenges

DWT

Although DWT is well-described by the lifting scheme which is straight-forward to implement in
hardware, it is a challenge to fully-pipeline the design to maximize the throughput, while still
remains synthesizable on hardware. As a result, we used serialization to reduce the required
multiplier/add on hardware, and dummy FIFOs between stages to decouple and pipeline the
DWT 1-D transformation module.

In actual implementation, multiple tricks are used to tweak the performance and reduce
utilization, such as use of bypass and pipeline FIFOs between stages, and using canonicalizing
rules to resolve conflicts between rules. It proved to be an intellectual exercise to optimise the
scheduling of different rules that can fire together.

Huffman

The primary challenge with implementing huffman encoding in hardware was the variable length
bit widths possible for each encoded word. The simplest solution parses the data in a bit by bit
fashion. While this approach standardizes the data width, it has extremely low throughput. Our
more complex solution created a buffer in which the encoded bits were stored. This allowed
variable length write of encoded data, while a single byte could be read by a different rule. On
the decoding side, the maximum data length could be check in a single rule, but only the
matching bits were extracted. Further by making use of EHRs, both reading and writing could
happen in the same cycle.

Design Exploration

As demonstrated above we have created an architecture capable of achieving a throughput of 1
sample per cycle. At these rates, we can achieve the performance of 1280x720 RGB at 18FPS.
This is below the rate of 30FPS necessary for real time. Two explorations to the architecture
could allow us to achieve this performance goal.

First, the data transfer rate over SceMi severely constrained our system. While exploring other
methods of transfer from the PC is an option, we can also explore different compression
schemes for the data. After quantizing the 3 Level DWT we had the following distribution of
samples:

24

x10°

-80 -60 -40 -20 0 20 40 60 80

The samples are distributed as follows:

0 1 -1 2 -2 3 -3 -4 Other

714019 | 21542 21291 4233 4228 1785 1897 1171 16266

89.65% of our samples are zero. With this data distribution, Run Length Encoding (RLE), an
encoding scheme that sends a data value and count of number of consecutive appearance
would perform better than Huffman Compression. By further compressing our data we can
transfer it to the board much faster.

Second, we did not experiment with increasing the clock frequency the architecture operates.
By determining, whether our system or individual pieces of the system could operate at higher
frequencies, we may be able to increase the number of frames loaded per second.

Reference
1. Li, J. (2002). Image Compression-the Mechanics of the JPEG 2000. Microsoft Research, Signal
Processing 2002.

2. Al Muhit, A,, Islam, M. S., & Othman, M. (2004, December). VLSI implementation of discrete
wavelet transform (DWT) for image compression. In Proc. International Conference on
Autonomous Robots and Agents, ICARA (Vol. 4).

3. Hasan, K. K., Ngah, U. K., & Salleh, M. F. M. (2013, November). Multilevel decomposition Discrete
Wavelet Transform for hardware image compression architectures applications. In Control System,
Computing and Engineering (ICCSCE), 2013 IEEE International Conference on (pp. 315-320).
IEEE.

25

