Lab 4: Audio Pipeline on the FPGA

6.375 Laboratory 4
Assigned: February 24, 2016
Due: March 2, 2016

1 Introduction

In this lab we will run the audio pipeline constructed in the previous labs on an FPGA. We introduce
Sce-Mi as a means for communicating between a host processor and FPGA and show how Sce-Mi
integrates with the Bluespec Workstation, allowing us to simulate the processor-FPGA link. We
will then synthesize the audio pipeline for the FPGA, look at area and timing results, and run the
audio pipeline on an actual FPGA. Following that we ask you to make the pitch factor a dynamic
parameter passed in at run time over the Sce-Mi link.

1.1 Sce-Mi

The Standard Co-Emulation Modeling Interface (Sce-Mi) is an Accellera standard which was de-
signed to aid in verification of hardware designs. The standard specifies a transaction-based modeling
interface used to pass messages between an un-timed software test bench and a design under test
(DUT) described in register transfer language (RTL). The DUT can be emulated on an FPGA to
achieve better performance than software RTL simulators are capable of.

Bluespec provides a complete implementation of the Sce-Mi standard, which makes Sce-Mi at-
tractive as a means for us to interact with the designs we run on FPGAs.

Figure (1] shows how the audio pipeline looks using Sce-Mi to pass the samples from the host
processor to the FPGA and back. The mkAudioPipeline module becomes our design under test
(DUT). The SceMiLayer is a wrapper around our DUT which hooks it up to the Sce-Mi ports inport
and outport and the reset transactor which enables soft reset of the FPGA by software. Samples
will arrive on inport and be passed directly to the audio pipeline. Samples coming out of the audio
pipeline will go to outport.

We use PCI Express as our bridge from host processor to FPGA. On the host processor we have
port proxies, corresponding to the Sce-Mi ports on the FPGA, which the software test bench can
interact with. The test bench is implemented in c++ and runs on the host processor.

For our audio pipeline to work with Sce-Mi, we do not need to change the audio pipeline code
from the previous lab. What we do is wrap the audio pipeline in the SceMilayer and replace
mkTestDriver with a new test bench written in c+4 running on the host processor which sends
and receives samples through the Sce-Mi port proxies to the audio pipeline on the FPGA.

1.2 Getting Started

The additional infrastructure needed to use Sce-Mi for communication between the host computer
and FPGA is provided in the lab4 harness.

Update your local repository with this new infrastructure. Add the 6.375 course locker, source
the setup script, navigate to the directory which contains the audio/ folder from the previous labs,
download lab4-harness.tar.gz from the course website, and run:

$ tar xf lab4-harness.tar.gz

This will create a directory called audio/scemi with some new files for using Sce-Mi in both
simulation and on the FPGA. To save the changes to your local repository, run

$ git add audio/scemi
$ git commit -m "lab4 initial checkin"

4 R
/ inport prox \ ian) Audio
port P VO} PCle Bridge Fout — biveline
outport proxy O | P p
reset proxy OJ |-EI reset (DUT)
SceMilLayer
Testbench
N\ J
_ Host Processor) FPGA

Figure 1: Audio Pipeline with Sce-Mi

The scemi/ directory contains a number of files. The most important are

SceMiLayer.bsv implements the Sce-Mi wrapper around mkAudioPipeline. It instantiates inport
and outport and hooks them up to mkAudioPipeline. It also instantiates the reset transactor.

Bridge.bsv selects from among a number of bridges supplied by Bluespec. Each bridge is specific
to the FPGA we are running on. We will use the TCP bridge for simulating the hardware
with Sce-Mi and the VC707 bridge when running on the FPGA. This is the top level module.

Tb.cpp implements the software test bench. It has the same functionality as the test bench we have
been using so far. It reads in.pcm, sends the samples through the audio pipeline and records
the transformed samples to out.pcm.

The other new files are, briefly,

ResetXactor.bsv Bluespec code for a reset transactor which allows resetting the FPGA from soft-
ware.

ResetXactor.h Header file for software interface to reset transactor.

ResetXactor.cpp Implementation of software interface to reset transactor.

sim/project.bld Project file for building audio pipeline with Sce-Mi for simulation.
fpga/project.bld Project file for building audio pipeline with Sce-Mi for the FPGA.
fpga/sync.xdc Supplemental constraint file for clock domain crossing between DUT and SceMi.

fpga/report_detailed.tcl Synthesis script to provide more detailed timing and resource reports.

2 Simulating with Sce-Mi

We introduced Sce-Mi so we can run our design on an FPGA instead of just simulating it in software,
but it is still extremely useful to simulate the design using the same Sce-Mi infrastructure. This
allows us to see the output of $display calls in our design and lets us avoid the long synthesis times
needed to synthesize the design for the FPGA when we are still debugging the functionality of the
design.

To use Sce-Mi we have split our system into two distinct pieces, the software test bench and
the hardware audio pipeline. The only interaction between the test bench and audio pipeline is

through the Sce-Mi bridge. In simulation we will still have those two distinct pieces, only instead of
running on an actual FPGA, we simulate the audio pipeline using a Bluesim process on our computer
separate from the test bench software. The bridge between those two processes is TCP instead of
PCI Express.

Building a project with Sce-Mi is a little more complicated than the simple projects we have
been using up to this point. The test bench is compiled separately from the audio pipeline because
the test bench is now implemented in c++. We also produce extra information for the test bench
to communicate with the audio pipeline, including things such as which bridge to use and what the
Sce-Mi port names are.

Bluespec provides a build process which knows how to build everything for Sce-Mi and is specif-
ically designed to make builds repeatable. We have set up a Workstation project which uses this
build process.

Navigate to the scemi/sim/ directory. The file project.bld describes what we want Bluespec’s
build process to build for us.

Problem 1: Simulate the audio pipeline with the Sce-Mi infrastructure by taking the following
steps.

1. Copy over our test input to the local directory. We use the short test input because simulation
on the full one takes around 20 minutes.

sim$ cp ../../data/mitrib_short.pcm in.pcm
2. Compile and link the design.
sim$ build -v

This will build two executables, a simulator for the audio pipeline called bsim_dut, and the
software test bench tb.

3. Start the DUT simulator.
sim$./bsim_dut
The simulator will start, waiting for software to feed it audio samples.
4. In a separate terminal, run the software testbench.
sim$./tb

The two programs will communicate over TCP to start the simulation. Note that hardware
debug messages (e.g. $display in Bluespec) are shown in the first terminal, while software
messages are shown in the second terminal.

5. Verify the output from simulation is correct by comparing it to the result from the mkTestDriver
test bench in the previous lab.

3 Running on the FPGA

We will now prepare our project to run on the FPGA.

3.1 Adding Synthesis Boundaries

Prior to synthesizing the hardware, we should tell the Bluespec compiler how we want to break up
our design into Verilog modules. By default, the compiler inlines all Bluespec modules, generating a
single flat Verilog module. However, the downstream synthesis tools determine hierarchy based on
the Verilog modules, so they never see the original Bluespec module hierarchy. This makes debugging
timing errors and analyzing resource utilizations difficult since we are unable to see module hierarchy
we expect in the synthesis tool reports.

To tell the compiler to not inline a module, use a synthesis pragma. For example, the multiplier
module used by the FIR filter is defined in common/Multiplier.bsv and is annotated with the
synthesis pragma.

(* synthesize *)
module mkMultiplier (Multiplier);

The synthesis pragma tells the Bluespec compiler to generate a separate Verilog file for the
implementation of the module thus annotated. The synthesis tools then recognize it as a distinct
module and will produce reports specific to that module.

3.2 Synthesis Boundaries on Polymorphic Modules

We would like to create synthesis boundaries for all of the components of our pipeline to under-
stand their individual resources utilizations and timings. The problem is, you can’t add a synthesis
boundary to a polymorphic module, because the underlying Verilog language doesn’t support poly-
morphism the way Bluespec does. Instead of placing a synthesis boundary on a polymorphic module,
we must wrap the polymorphic module in a non-polymorphic module specific to the instantiation
we need and put the synthesis boundary around that.

For example, in our audio pipeline we instantiate the mkFFT module with something like:

FFT#(N, ComplexData) fft <- mkFFT();

We can make a specialized FFT in its own synthesis boundary by creating a new module for it.

(* synthesize *)

module mkAudioPipelineFFT(FFT#(N, ComplexData));
FFT#(N, ComplexData) fft <- mkFFT();
return fft;

endmodule

In our audio pipeline we will instantiate this specialized FF'T module instead of the polymorphic
mkFFT.

FFT#(N, ComplexData) fft <- mkAudioPipelineFFT();
Now when we synthesize for the FPGA, £ft will be listed as a separate module in the reports.

Problem 2: Create synthesis boundaries for your audio pipeline for the following modules: Au-
dioPipeline, FIR, FFT, ToMP, PitchAdjust, FromMP, and IFFT. Use parameters N = 8, S = 2, and
a pitch factor of 2.0.

3.3 Running Synthesis and Place-and-Route

In the fpga directory we have set up the project build file project.bld for synthesizing the audio
pipeline for an FPGA. Build the project using:

fpga$ vivado_setup build -v

First, this calls the Bluespec compiler to generate Verilog code in the vlog_dut directory. You
should see a separate Verilog file for each of your modules of interest if synthesis boundaries were
added correctly. Then, it uses the Xilinx tool, Vivado, to map and place-and-route the design for
our FPGAs. This takes about 70 minutes to complete on the visifarm machines. The Xilinx tools
output reports to the xilinx/ directory from which we can learn the area and critical path of our
design.

The directory xilinx/mkBridge/mkBridge.runs/impl_1 contains post-place-and-route reports
for the project. The file mkBridge utilization_placed.rpt contains the resource utilization sum-
maries of the project. We can get additional information about resource usage from the file
mkBridge utilization_placed_-hierarchical.rpt, which shows a detailed report of resource uti-
lization by module hierarchy, for each synthesized boundary in the design.

The mkBridge timing summary_routed.rpt reports the clocks and timing summary. Our audio
pipeline is clocked by my_clk_usr configured to run at 67 MHz. The Design Timing Summary table
tells us the total negative slack (TNS) and the number of failing endpoints (TNS Failing Endpoints).
If your design has met timing, both columns should be 0. Do not worry if your design did
not meet timing in the first run. The next section discusses how to identify critical paths.

3.4 Timing Analysis using Vivado

The timing summary report can quickly tell us whether our design met timing. In order to take a
deeper look at failing paths, we can use the Xilinx Vivado GUI to interactively examine the design.

1. Open the generated project:

fpga$ vivado xilinx/mkBridge/mkBridge.xpr &

2. On the left side pane, select Open Implemented Design. This will show us the layout of our
design on the FPGA.

3. On the left side pane, select Report Timing Summary. Leave the default settings and click 0K
to run the timing analysis.

4. The bottom pane will display all the clocks and the top 10 critical paths within each clock
domain (Intra-Clock) and across clock domains (Inter-Clock). Failing clocks are shown in red.
Double click on the failing paths to examine them. Look at the hierarchy of the path and the
path itself to narrow down which part of the module is contributing to the delays. Recall that
our audio pipeline is entirely clocked by my_clk_usr at 67 MHz.

Since the Vivado GUI can be slow to access over SSH, we have told the tool to generate a
text version of this detailed report in mkBridge timing detailed_routed.rpt at the end of build.
Search for the keyword VIOLATED in the report to find timing errors.

If your design does not meet the timing requirement of 67 MHz you need to reduce the critical
path in your design by breaking up that combinational path across multiple cycles. For example,
the combinational FFT implementation likely will not meet timing, so you should use one of your
pipelined implementations for the FFT instead. Repeat the build process until your design meets
timing. Please do not attempt to program the FPGA until your design meets timing since bad
hardware can cause the server to crash.

3.5 Running on the FPGA

Now that you have synthesized your design for the FPGA and the design meets timing constraints,
all that remains is to run it!

Problem 3: Run your design on an FPGA.

e I
/ inport prox \ el Audio
port proxy O} PCle Bridge [Dout " Pipeline
outport proxy O . ° P
reset proxy OJ E reset (DUT)
setfactor proxy O setfactor
SceMilLayer
Testbench
_ J
_ Host Processor) FPGA

Figure 2: Sce-Mi setup with Dynamic Pitch Factor

1. Log into one of the FPGA servers listed on the course website under Resources, which have
FPGAs connected to them. Because there are a limited number of FPGAs and we don’t
have in place anything to manage who gets to use which FPGA, you should be careful and
considerate of the other people who want to use the FPGAs. If it seems someone else is using
the FPGA, try a different machine. You can see who else is logged in on the computer with
the w command.

Source the class setup script, navigate to the lab 4 scemi/fpga/ directory,

2. Program the FPGA.
programfpga xilinx/mkBridge.bit

3. Make sure you have some sample audio in.pcm in the scemi/fpga directory (try mitrib_short.pcm
first). Then run the testbench.

runtb ./tb

4. Verify the output is correct by comparing it to the results you got in simulation.

Because the test bench sends a soft reset to the FPGA every time the test bench start, you
should be able to rerun the test bench repeatedly without reprogramming the board and still get
the correct results.

4 Making the Pitch Factor Dynamic

As your design currently is, the pitch factor used in the audio pipeline is specified statically at
compile time. With the Sce-Mi infrastructure we can ask the user for the desired pitch factor at
runtime via software running on the host computer and pass that to our hardware dynamically so
the hardware does not have to be resynthesized to be used with different pitch factors.

This part of the lab asks you to make the pitch factor a dynamic parameter.

Add a register to the mkPitchAdjust module which holds the FixedPoint pitch factor. Initialize
the pitch factor to be Invalid. Don’t allow computation in the mkPitchAdjust module to proceed
until the pitch factor has been set externally. Only allow the pitch factor to be set once, before any
computation is performed, because it is not clear what it means to change the pitch factor in the
middle of a computation.

Figure [2] shows what the Sce-Mi setup should look like by the end of the lab. We will start
by exposing a new setfactor subinterface of the mkPitchAdjust module to the world outside the
audio pipeline. We’ll then instantiate a Sce-Mi port in the SceMiLayer and a port proxy in the test
bench used to pass the pitch factor through the audio pipeline to the mkPitchAdjust module.

4.1 Subinterfaces in Bluespec

Subinterfaces are a nice feature in Bluespec for assembling large designs. Subinterfaces in Bluespec
let you have not only methods in a Bluespec interface, but also other interfaces. These sub interfaces
can then be implemented and accessed separately in a convenient way. For example, we can change
the interface of mkPitchAdjust to a new interface, call it SettablePitchAdjust, which has two
subinterfaces. The first subinterface will be exactly our PitchAdjust interface from the previous
lab. The second interface will be a Put#(FixedPoint) interface which allows us to set the pitch
factor.

interface SettablePitchAdjust#(
numeric type nbins, numeric type isize,
numeric type fsize, numeric type psize

)

interface PitchAdjust#(nbins, isize, fsize, psize) adjust;
interface Put#(FixedPoint#(isize, fsize)) setfactor;
endinterface

Each subinterface is given a name used when implementing the subinterface and accessing the
subinterface.

Where before we implemented the PitchAdjust interface in the mkPitchAdjust module with
something like

interface Put request = toPut(infifo);
interface Get response = toGet(outfifo);

we must now distinguish between the PitchAdjust subinterface and the setfactor subinterface.
To implement the SettablePitchAdjust interface, we would instead write something like

interface PitchAdjust adjust;
interface Put request = toPut(infifo);
interface Get response = toGet(outfifo);
endinterface

interface Put setfactor;
method Action put(FixedPoint#(isize, fsize) x) if (...);
endmethod
endinterface
We use the interface keyword, followed by the type of the interface without type parameters,
followed by the name of the subinterface. Between that and the endinterface keyword we put the
implementation for that specific subinterface. Notice we already do this for request and response,
which are just subinterfaces of the Server interface in Bluespec.

To access subinterfaces, you specify the name of the subinterface you want to use after a dot.
For example, in our pitch adjust test bench, if before we instantiated a module as

PitchAdjust#(8, 16, 16, 16) pitch <- mkPitchAdjust(2, 2.0);
and call its methods as

pitch.request.put(v);

Now we will instantiate it as
SettablePitchAdjust#(8, 16, 16, 16) pitch <- mkPitchAdjust(2);
and call its methods as
pitch.adjust.request.put(v);
You can also name a subinterface.

SettablePitchAdjust#(8, 16, 16, 16) pitch <- mkPitchAdjust(2);
PitchAdjust#(8, 16, 16, 16) adjust = pitch.adjust;

and call its methods as before
adjust.request.put(v);

Notice we instantiate the module first, then use the equality operator in the next line to give a
name to one of its interfaces without instantiating more hardware.

Problem 4: Change your mkPitchAdjust module to implement the SettablePitchAdjust inter-
face as described above. Update the test bench for the mkPitchAdjust module to use this new
interface. The mkPitchAdjust module should no longer take the factor as a module parameter. You
will have to set the factor when the test bench starts using the setfactor subinterface for things to
work.

We want to expose the setfactor subinterface inside the audio pipeline to the software test
bench, which means the audio processor interface needs to be expanded too with a setfactor
interface.

Problem 5: Change the mkAudioPipeline module to use an interface which exposes the setfactor
of the mkPitchAdjust module to the outside world as shown in figure |3| Before we can try out the
new mkAudioPipeline module we need to add a new Sce-Mi port for setting the pitch factor from
software.

4.2 Adding a Sce-Mi Port

Because we chose to use the Put interface for setting the pitch factor, it is very easy to instantiate a

Sce-Mi port. Bluespec provides a library of Sce-Mi ports, including mkPutXactor, which works with

the Put interface. Other useful SceMi transactors provided by the Bluespec library are mkGetXactor,

mkServerXactor and mkClientXactor. For more information on both the hardware and software

libraries for Sce-Mi provided by Bluespec, see the document $BLUESPECDIR/ . ./doc/BSV/emVM. pdf.
The first step in adding a Sce-Mi port is to instantiate it in the SceMiLayer.

Problem 6: Change the DutInterface interface and mkDutWrapper module in SceMilayer.bsv
to expose the setfactor interface. Update the instantiation of mkServerXactor to take the audio
processor subinterface of the dut as an argument, and instantiate a new port for the setfactor
interface with something like:

Empty setfactor <- mkPutXactor(dut.setfactor, clk_port_scemi);

The SceMi transactors are clocked by clk_port_scemi at 50 MHz from within the SceMi infras-
tructure. However, our audio processor runs in its own clock domain of 67 MHz. Thus we need
synchronization primitives to pass data between state elements across the two clock domains. This
is done using the Bluespec provided synchronization FIFOs in mkDutWrapper. Updated the wrapper
with a new sync FIFO connected to the setfactor interface, where data crosses from SceMi clock
to our user clock domain:

SyncFIFOIfc#(FactorType) toApFactorSyncQ <- mkSyncFIFOFromCC(2, clk_usr);

putSamplelnput setfactor

|
Sample N% Complex
FIR FromMP IFFT
Sample N 1 ComplexMP N 1~ Complex
Chunker PitchAdjust |— (frcmplx >
S 1 Sample N 1+ ComplexMP N 1+~ Sample
OverSampler ToMP Overlayer
N 14 Sample N 4 Complex S 4 Sample
(tocmplx) FFT Splitter

Sample

N % Complex

getSampleOutput

Figure 3: AudioPipeline with setfactor exposed

Now we need to update the software test bench, Tb.cpp to get and send the pitch factor over
the Sce-Mi port to the hardware.

You will need to instantiate an InportProxyT in Tb.cpp which corresponds to the mkPutXactor
you instantiated in SceMiLayer.bsv. When instantiating the inport proxy we need to specify the
type of the data that will be going across the port and the name of the input port on the hardware
side to connect the port proxy to.

The type of data our new port uses is the type of the pitch factor, a FixedPoint#(isize,
fsize), where isize and fsize are set by the audio pipeline code. For example, they may both
be 16 bits, in which case the pitch factor is 32 bits. We can use the type BitT<32> with the
InportProxyT on the software side and manually pack it to correspond with the representation used
on the hardware side. This is painful and fragile however. If we change the type of the pitch factor
in the audio pipeline, we would like our test bench to keep working without change.

Fortunately, Bluespec provides a script integrated in the build system for automatically gener-
ating c++ class files for types that are used on Sce-Mi ports. If we define a typedef somewhere in
the audio pipeline such as:

typedef FixedPoint#(16, 16) FactorType;

and then use that typedef in the DutInterface setfactor subinterface, then Bluespec will generate
a file called tbinclude/FactorType.h defining a corresponding c++ type for FactorType which we
can refer to in the test bench code.

The FactorType, because it is a FixedPoint, will have the same structure as FixedPoints in
Bluespec, it will have a field m_i with the integer part and m_f with the fractional part. The length
of these fields can be tested for in software using the getBitSize method. For example, to create a
FactorType object in the test bench from a double pf which is the pitch factor, you could do

FactorType factor;
factor.m_i = (int)floor(pf);
factor.m_f (int) (pow(2, factor.m_f.getBitSize()) * (pf - floor(pf)));

To send the FactorType object over the setfactor port proxy is now as easy as
setfactor.sendMessage(factor) ;

The other piece of information we need before we can instantiate our setfactor port proxy in
software is the name of the corresponding port instantiated in the SciMeLayer. This name is
determined based on the module hierarchy of the generated Verilog code and is not always obvious
from the Bluespec code. A good way to identify the appropriate name is to first compile the
Bluespec code, then look at the file scemi.params which the compilation process generates. The
scemi.params lists for each port its name, width, and type. Copy the name from the scemi.params
file into your test bench when instantiating the setfactor InputProxyT.

Problem 7: Update your SceMi test bench to accept the pitch factor dynamically and pass it to
your audio pipeline via SceMi. Verify the change works both when simulating Sce-Mi, and when
running on the FPGA. The following changes will be required in Tb. cpp.

1. Add code to get the pitch factor from the test bench argv[1] parameter to the main function.
You can use the function atof to convert the string to a double in C.

2. Instantiate an InportProxyT of appropriate type and link it with the appropriate hardware
port by specifying the right name (you may need to compile the Bluespec code first and look
at scemi.params to figure out this name.)

3. Convert the pitch factor from a double to a FixedPoint and send it over the factor port using
the sendMessage method after resetting the dut, but before running the test.

You can run the tb with a pitch factor argument. In simulation:

10

./tb 2.0
On a programmed FPGA:

runtb ./tb 2.0

5 Discussion Questions

1. Report the total number of Slice Registers and LUT's used in your design after making the pitch
factor dynamic. Report the Slice Reg, LUTs, and DSP48E used by each of the AudioPipeline,
FIR, FFT, ToMP, PitchAdjust, FromMP, and IFFT modules.

2. Report the length of the critical path of your audio pipeline. Can you tell where in the design
your critical path is?

3. Did you run into any problems using the FPGA?
4. What advantages are there to using subinterfaces in an interface instead of just using methods?

5. If you try to synthesize the audio pipeline with a 32 point FFT, you’ll see it doesn’t fit on the
FPGA. Ideally we could use a 1024 point FFT and still maintain the target rate of processing
44100 samples per second. Using the circular pipeline for the FFT, it would take 10 cycles to
calculate the FFT of 1024 samples. At 66.667 Mhz this means the FFT supports a throughput
of 1024/10 * 66,666,667 = 6,826,666,701 samples per second, which is much greater than
the 16 * 44100 = 705600 samples per second our application requires the FFT to support
assuming we have an overlap of N/S = 16. Also, with a 1024 point FFT, the input vector is
whopping 1024 * (2 * (2 % 16)) = 65536 bits wide. Given our design of the FFT has a much
higher throughput than we need and an excessively large input width, how could we change
our implementation of the FFT to both fit on the FPGA using 1024 points and still meet our
required sample rate? Would the rest of the audio pipeline have to change to support this as
well?

6 What to Turn In

When you have completed the lab you should check in a final version via git. This should include
the pipeline updated with dynamic pitch factor and answers to the discussion questions in a file
called lab4 in the answers directory. For example

audio$ git add -u .

audio$ git add answers/lab4d

audio$ git commit -m "Lab 4 submission"
audio$ git push

11

	Introduction
	Sce-Mi
	Getting Started

	Simulating with Sce-Mi
	Running on the FPGA
	Adding Synthesis Boundaries
	Synthesis Boundaries on Polymorphic Modules
	Running Synthesis and Place-and-Route
	Timing Analysis using Vivado
	Running on the FPGA

	Making the Pitch Factor Dynamic
	Subinterfaces in Bluespec
	Adding a Sce-Mi Port

	Discussion Questions
	What to Turn In

