
Lab 5: RISC-V Introduction 6.375 – Spring 2016

Lab 5: RISC-V Introduction – Multi-Cycle and Two-Stage Pipeline

Due: 11:59:59pm, Wed Mar 9, 2016

1 Introduction

This lab introduces the RISC-V processor and the toolflow associated with it. The lab begins with the
introduction of a single cycle implementation of a RISC-V processor. You will then create two and four cycle
implementations driven by memory structural hazards. You will finish by creating a two stage pipelined
implementation so fetch and execute are happening in parallel. This two stage pipeline will be the basis for
future pipelined implementations. Details of the RISC-V ISA can be found under the Resources section of
the course website.

2 The Processor Infrastructure

A large amount of work has already been done for you in setting up the infrastructure to run, test, evaluate
performance, and debug your RISC-V processor in simulation and on the FPGA. The processor designs for
this lab cannot be run on FPGAs because of the type of memory used.

2.1 Initial Code

Add the 6.375 course locker, source the setup script, navigate to your git repository which contains the
audio/ folder from the previous labs, download lab5-harness.tar.gz from the course website

$ tar xf lab5-harness.tar.gz

The code provided for this lab has three folders in it: programs/, scemi/, and src/. programs/ contains
RISC-V programs in assembly and C. scemi/ contains the infrastructure for compiling and simulating the
processors. src/ contains the BSV code for the RISC-V processors.

Within the BSV source folder, there is a folder src/includes/ which contains the BSV code for all the
modules used in the RISC-V processors. These files are briefly explained below.

Btb.bsv Implementations of a branch target buffer address predictor.

CsrFile.bsv Implementation of CSRs (including mtohost, which communicates with host PC).

DelayedMemory.bsv Implementation of memory with one-cycle delay.

DMemory.bsv Implementation of the data memory with combinational reads and writes using a massive
register file.

Decode.bsv Implementation of the instruction decoding.

Ehr.bsv Implementation of EHRs as described in the lectures.

Exec.bsv Implementation of the instruction execution.

Fifo.bsv Implementation of a variety of FIFOs using EHRs as described in the lectures.

IMemory.bsv Implementation of the instruction memory with combinational reads using a massive register
file.

MemInit.bsv Modules for downloading the initial contents of instruction and data memories from the host
PC.

MemTypes.bsv Common types relating to memory.

ProcTypes.bsv Common types relating to the processor.

RFile.bsv Implementation of the register file.

Types.bsv Common types.

1

Lab 5: RISC-V Introduction 6.375 – Spring 2016

SceMiLayer
Host

TestBench

Core

hostToCpu

dMemInit

Bridge

cpuToHost

HardwareSoftware

iMemInit

Figure 1: SceMi Setup

2.2 The SceMi Setup

Figure 1 shows the SceMi setup for the lab. The SceMiLayer instantiates the processor from the specified
processor BSV file and SceMi ports for the processor’s hostToCpu, cpuToHost, iMemInit, and dMemInit
interfaces. The SceMiLayer also provides a SceMi port for reseting the core from the test bench, allowing
multiple programs to be run on the Processor without reprogramming the FPGA.

Since we only run the processor in simulation in this lab, we will bypass the time-consuming phase of
initializing the memory through iMemInit and dMemInit interfaces. Instead, we directly load the memory
with desired values using memory initialization files (.vmh files introduced in Section 2.4) when the simulation
starts, and we will re-launch simulation for each program.

Source code for the SceMiLayer and Bridge are in the scemi/ directory. The SceMi link goes over a TCP
bridge for simulation and a PCIe bridge when running on the actual FPGA.

2.3 Building the Project

The file scemi/sim/project.bld describes how to build the project using the build command which is
part of the Bluespec installation. Run build --doc for more information on the build command. The
full project, including hardware and testbench, can be rebuilt from scratch by running the command
build -v <proc_name> from the scemi/sim/ directory where <proc_name> is one of the processor names
specified in this lab handout1. This will overwrite the executable generated by any previous call to build.

2.4 Compiling the Assembly Tests and Benchmarks

Our SceMi test bench runs RISC-V programs specified in Verilog Memory Hex (vmh) format. The programs/
assembly directory contains source codes for assembly tests, and the programs/benchmarks directory con-
tains source codes for benchmark programs. We will use these programs to test the processor. A Makefile is
provided under each directory for compiling the programs to the required .vmh format.

To compile all the assembly tests, go to the programs/assembly directory and run the make command.
This will create a new directory called programs/build/assembly, which contains compilation results for
all assembly tests. The vmh subdirectory under it contains all the .vmh files, and the dump subdirectory
contains all the dumped assembly codes.

Similarly, go to the programs/benchmarks directly and run the make command to compile all benchmarks.
The compilation results will be in programs/build/benchmarks directory.

Compile the assembly tests and benchmarks now. It has been tested that the RISC-V compiler can work
on all vlsifarm machines. However it may NOT work on normal Athena machines, so we recommend to
compile these programs on vlsifarm machines. After the compilation, you can still use other Athena machines
to work on the lab.

The .vmh files in the programs/build/assembly/vmh directory are assembly tests, and they are intro-
duced below:

1Running build -v by itself will print an error message containing all valid processor names.

2

Lab 5: RISC-V Introduction 6.375 – Spring 2016

simple.riscv.vmh Contains the basic infrastructure code for assembly tests and runs 100 NOP instruc-
tions2.

bpred bht.riscv.vmh Contains many branches that a branch history table can predict well.

bpred j.riscv.vmh Contains many jump instructions that a branch target buffer can predict well.

bpred ras.riscv.vmh Contains many jumps via registers that a return address stack (RAS) can predict
well.

cache.riscv.vmh Tests a cache by writing to and reading from addresses that would alias in a smaller
memory.

<inst>.riscv.vmh Tests a specific instruction.

Each assembly test will print the cycle count, instruction count, and whether the test passes or fails. An
example output for simple.riscv.vmh on a single-cycle processor is

102

103

PASSED

The first line is the cycle count, the second line is the instruction count, and the last line shows that the
test passes. The instruction count is larger than the cycle count because we read the instruction count CSR
(instret) after reading the cycle count CSR (cycle). If the test fails, the last line will be FAILED exit

code = <failure code>. You can use the failure code to locate the problem by looking into the source
code of the assembly test.

It is highly recommended you rerun all the assembly tests after making any changes to your processor
to verify you didn’t break anything. Also, run the assembly tests when trying to locate a bug, as they will
narrow down which instructions are problematic.

Those .vmh files in the programs/build/benchmarks/ directory are benchmarks which can be used to
evaluate the performance of your processor. These benchmarks are briefly introduced below:

median.riscv.vmh 1-D three element median filter.

multiply.riscv.vmh Software multiplication.

qsort Quick sort.

towers Hanoi tower.

vvadd Add two vectors.

Each benchmark will print its benchmark name, the cycle count, the instruction count, the return value,
and whether the benchmark passes or fails. An example output for the median benchmark on a single-cycle
processor is

Benchmark median

Cycles = 4014

Insts = 4015

Return 0

PASSED

If the benchmark executes correctly, the last two lines should be Return 0 and PASSED. If the benchmark
fails, the last line will be FAILED exit code = <failure code>.

Performance is measured in instructions-per-cycle (IPC). The greater the IPC the better. For our pipeline
we can never exceed an IPC of 1, but we should be able to get close to it with a good branch predictor and
proper bypassing.

2NOP is short for No Operation.

3

Lab 5: RISC-V Introduction 6.375 – Spring 2016

2.5 Using the Test Bench

Our SceMi test bench is software running on the host processor which interacts with the RISC-V processor
over the SceMi link, as shown in Figure 1. The test bench starts the processor and handles toHost requests
until the processor indicates it has completed, either successfully or unsuccessfully. For example, the cycle
count in the test output are actually toHost requests from the processor to print an integer, and the requests
are handled by the test bench by printing the integer out. The last line (i.e. PASSED or FAILED) of the test
output is also printed out by the test bench based on the toHost request which indicates the end of processing.

To run the test bench, first build the project as described in section 2.3 and compile the RISC-V programs
as described in section 2.4. For simulation the executable bsim dut will be created, which should be running
when you start the test bench. In simulation, our RISC-V processor always loads the scemi/sim/mem.vmh

file to initialize the memory. Therefore, we only need to copy the .vmh file of the test program that we want
to run.

For example, to run the median benchmark on the processor in simulation you could use the commands
under the scemi/sim directory:

cp ../../programs/build/benchmarks/vmh/median.riscv.vmh mem.vmh

./bsim_dut > median.out &

./tb

For your convenience, we have provided scripts run asm.sh and run bmarks.sh in the scemi/sim directory
which run all the assembly tests and benchmarks respectively. The stdout of the bsim dut will be redirected
to logs/<test name>.log file.

2.6 Test Bench Output

There are two sources of outputs from RISC-V simulation. These include BSV display statements (both
messages and errors) and RISC-V print statements.

BSV $display statements are printed to stdout by bsim dut. BSV can also print to stderr using
$fwrite(stderr, ...) statements. The scripts run asm.sh and run bmarks.sh redirect the stdout of
bsim dut to the logs/<test name>.log file.

RISC-V print statements (e.g., printChar, printStr and printInt functions in programs/benchmarks/

common/syscall.c) are handled through moving characters and integers to the mtohost CSR. The test bench
reads from the cpuToHost interface and prints characters and integers to stderr when it sees them.

Exercise 1 (0 Points): Compile the test programs by going to the programs/assembly and programs/

benchmarks directory and using the make command. Compile the one-cycle RISC-V implementation and
test it by going to the scemi/sim directory and using the following commands:

build -v onecycle

./run_asm.sh

./run_bmarks.sh

During the compilation of BSV codes (i.e. build -v onecycle), you may see lots of warnings after the
sentence ”code generation for mkBridge starts”. Those warnings are for the SceMi infrastructure, and
generally you do not need to be concerned about them.

Discussion Question 1 (5 Points): Take a look at the assembly dump (vvadd.riscv.dump) and C
source code (vvadd main.c) of the vvadd benchmark. Which assembly instructions correspond to the vector
addition in the vvadd C code shown below? Briefly explain.

30: c[i] = a[i] + b[i];

4

Lab 5: RISC-V Introduction 6.375 – Spring 2016

3 Multi-cycle RISC-V Implementations

The provided code, src/OneCycle.bsv, implements a one-cycle Harvard architecture3 RISC-V processor.
This processor is able to do operations in a single cycle because it has separate instruction and data memories,
and each memory gives responses to loads in the same cycle. In this portion of the lab you will make two
different multicycle implementations motivated by more realistic memory structural hazards.

3.1 Two Cycle Von Neumann Architecture RISC-V implementation

An alternative to the Harvard architecture is the von Neumann architecture4. The von Neumann architecture
has instructions and data stored in the same memory. If there is only one memory that holds both instructions
and data, then there is a structural hazard (assuming the memory cannot be accessed twice in the same
cycle). To get around this hazard, you can split the processor into two cycles: instruction fetch and execute.

1. Instruction fetch reads the current instruction from the memory and decodes it.

2. Reads the register file, executes instructions, does ALU operations, does memory operations, and writes
back to the register file.

When splitting the processor to a two cycle implementation, you will need a register to keep intermediate
data between the two stages, and you will need a state register to keep track of the current state. The
intermediate data register will be written to during fetch, and it will be read from during execute. The state
register will toggle between fetch and execute. You can use the provided Stage typedef as the type for the
state register to make things easier.

Exercise 2 (15 Points): Implement a two-cycle RISC-V processor in TwoCycle.bsv using a single memory
for instructions and data. The module mem has been provided for you to use as your single memory. Test
this processor by going to the scemi/sim directory and using the following commands:

build -v twocycle

./run_asm.sh

./run_bmarks.sh

3.2 Four-cycle RISC-V implementation to support memory latency

The one and two-cycle RISC-V processors assume a memory that has combinational reads; that is, if you
set the read address, then the data from the read will be valid during the same clock cycle. Most memories
have reads with longer latencies: first you set the address bits, and then the read result is ready on the next
clock cycle. If we change the memory in the previous RISC-V processor implementations to a memory with
a read latency, then we introduce another structural hazard: results from reads cannot be used in the same
cycle as the reads are performed. This structural hazard can be avoided by further splitting the processor
into four cycles: instruction fetch, instruction decode, execute, and write back.

1. Instruction fetch sets the address lines on the memory to PC to read the current instruction.

2. Instruction decode gets the instruction from memory, decodes it, and reads registers.

3. Execute will perform ALU operations, write data to the memory for store instructions, and set memory
address lines for read instructions.

4. Write back will get any read results from the memory and it will write back to the register file (either
from the ALU or from the memory).

3The Harvard architecture has separate instruction and data memories
4The von Neumann architecture is also called the Princeton architecture

5

Lab 5: RISC-V Introduction 6.375 – Spring 2016

This processor will require more registers between stages and an expanded state register. You can use the
modified Stage typedef as the type for the state register.

A one-cycle read latency memory is implemented by mkDelayedMemory. This module has an interface,
DelayedMemory, that decouples memory requests and memory responses. Requests are still made in the
same way using req, but this method no longer returns the response at the same time. In order to get the
results of a requested load, you have to call the resp action value method in a later clock cycle to get the
memory response from the previous read. A store request will not generate any response, so you should
not call the resp method for stores. More details can be found in the source file DelayedMemory.bsv in
src/includes.

Exercise 3 (15 Points): Implement a four-cycle RISC-V processor in FourCycle.bsv as described above.
Use the delayed memory module mem already included in FourCycle.bsv for both instruction and data
memory. Test this processor using the following command:

build -v fourcycle

./run_asm.sh

./run_bmarks.sh

4 Two-stage pipeline RISC-V Implementation

While the two-cycle and four-cycle implementations allow for processors that handle certain structural haz-
ards, they do not do well in performance. All processors today are pipelined to increase performance, and
they often have duplicated hardware to avoid structural hazards such as the memory hazards seen in the
two- and four-cycle RISC-V implementations. Pipelining introduces many more data and control hazards
for the processor to handle. To avoid data hazards for now, we will only look at a two-stage pipeline.

The two-stage pipeline uses the way the two-cycle implementation splits the work into two stages, and it
runs these stages in parallel using separate instruction and data memories. This means as one instruction
is being executed, the next instruction is being fetched. For branch instructions, the next instruction is not
always known. This is known as a control hazard.

To handle this control hazard, use a PC+4 predictor in the fetch stage and correct the PC when mispre-
dictions occur. The mispredict field of ExecInst will be useful here.

Exercise 4 (30 Points): Implement a two-cycle pipelined RISC-V processor in TwoStage.bsv using sep-
arate instruction and data memories (with combinational reads, just like the memories from OneCycle.bsv).
You can implement either inelastic or elastic pipeline.

NOTE: If you need to use FIFOs, please do NOT use the ones provided by the BSV library (i.e. import

FIFO::*). Instead use the import Fifo::* library provided in the lab harness.

Test this processor using the following command:

build -v twostage

./run_asm.sh

./run_bmarks.sh

4.1 Instructions Per Cycle

Processor performance is often measured in instructions per cycle (IPC). This metric is a measure of through-
put, or how many instructions are completed per cycle on average. IPC is computed by dividing a number
of instructions by how many cycles it took to execute those instructions. The one-cycle implementation gets
1.0 IPC, but since the clock required for the one-cycle implementation to work is very slow, this is not as
fast as it sounds. The two-cycle and four-cycle implementations achieve 0.5 and 0.25 IPC respectively.

The pipelined implementation of the processor will achieve somewhere between 0.5 IPC and 1.0 IPC.
Since the only thing keeping your processor from an IPC of 1.0 is branch misprediction, the actual IPC of
your processor depends only on the accuracy of your PC+4 next address predictor.

6

Lab 5: RISC-V Introduction 6.375 – Spring 2016

Discussion Question 2 (5 Points): What is the IPC for the two-stage pipelined processor for each
benchmark tested by the run bmarks.sh script?

Discussion Question 3 (5 Points): What is the formula to compute the next address predictor accuracy
from the IPC? (Hint, how many cycles does it take to execute an instruction when the PC+4 prediction
is correct? What about when it is incorrect?) Using this formula, what is the accuracy of the PC+4 next
address predictor for each benchmark?

4.2 Next Address Prediction

Now lets use a more advanced next address predictor. One such example is a branch target buffer (BTB).
A BTB keeps track of previously used next addresses that were not PC+4, and it is used to compute the
next address instead of PC+4 whenever it contains a next PC for the current PC.

Btb.bsv contains an implementation of a BTB. Its interface has two methods: predPc and update. The
method predPc takes the current PC and it returns a prediction. The method update takes a program
counter and the next address for the instruction at that program counter and adds it as a prediction if it is
not PC+4.

The predPc method should be called to predict the next PC, and the update method should be called
after a branch resolves. The execution stage requires both the PC of the current instruction and the predicted
PC to resolve branches, so you need to store these information in the pipeline register or FIFO.

The mispredict and addr fields of ExecInst will be very useful here. It should be noted that the addr

field is not always the correct PC of the next instruction. It will be memory access addresses for loads and
stores. Check the instruction type to derive the correct next instruction PC in execution stage. Refer to
recitation slides for more information on BTBs.

Exercise 5 (10 Points): Add a BTB to your two-cycle pipelined RISC-V processor and save the results
in TwoStageBTB.bsv. The BTB module is already instantiated in the initial code. Test this processor using
the following command:

build -v twostagebtb

./run_asm.sh

./run_bmarks.sh

Discussion Question 4 (5 Points): What is the IPC for the two-stage pipelined processor with a BTB
for each benchmark tested by the run bmarks.sh script? How much has it improved over the previous
version?

Discussion Question 5 (5 Points): How does adding the BTB change the performance of the bpred *

microbenchmarks? (Hint: the number of cycles for bpred j should go down.)

4.3 Submission

Check in all of your code:

riscv$ git add src/*

riscv$ git add answers/lab5

riscv$ git status # make sure your lab files are added

riscv$ git commit -m "Lab 5 submission"

riscv$ git push

Bonus Discussion Questions

7

Lab 5: RISC-V Introduction 6.375 – Spring 2016

Discussion Question 6 (5 Bonus Points): Look at the assembly source for the bpred * benchmarks
and explain why each benchmark improved, stayed the same, or got worse.

Discussion Question 7 (5 Bonus Points): How would you improve the BTB to improve the results of
bpred bht?

8

	Introduction
	The Processor Infrastructure
	Initial Code
	The SceMi Setup
	Building the Project
	Compiling the Assembly Tests and Benchmarks
	Using the Test Bench
	Test Bench Output

	Multi-cycle RISC-V Implementations
	Two Cycle Von Neumann Architecture RISC-V implementation
	Four-cycle RISC-V implementation to support memory latency

	Two-stage pipeline RISC-V Implementation
	Instructions Per Cycle
	Next Address Prediction
	Submission

