
Lab 6: RISC-V Pipeline with Caches 6.375 – Spring 2016

Lab 6: RISC-V 6-stage Pipeline with Caches

Due: 11:59:59pm, Fri Mar 18, 2016

This lab is your introduction to realistic RISC-V pipelines and caches. In the first part of the lab, you will
implement a six-stage RISC-V pipeline. In the second part, you will augment the pipeline with caches and
external DRAM to run large benchmarks on actual FPGA.

Part A: RISC-V 6-stage Pipeline

1 Introduction

Add the 6.375 course locker, source the setup script, navigate to your top git repository directory from
previous labs, download lab6a-harness.tar.gz from the course website

$ tar xf lab6a-harness.tar.gz

$ git add riscv-lab6a

$ git commit -m "Lab 6a initial commit"

$ cd riscv-lab6a

1.1 New BSV Files

1.1.1 Within src/includes/:

FPGAMemory.bsv A wrapper for block RAM commonly found on FPGAs. This has an identical interface as
the DelayedMemory from the previous lab.

SFifo.bsv Three searchable FIFO implementations: one based off of a pipeline FIFO, one based off of a
bypass FIFO, and the other based off of a conflict-free FIFO. All implementations assume search is
done immediately before enq.

Scoreboard.bsv Three scoreboard implementations based off of searchable FIFOs. The pipeline scoreboard
uses a pipeline searchable FIFO, the bypass scoreboard uses a bypass searchable FIFO, and the conflict-
free scoreboard uses a conflict-free searchable FIFO.

1.2 New Assembly Test

bpred j noloop.S An assembly test similar to bpred j.S, but the outer loop is removed.

1.2.1 Within src/:

TwoStage.bsv An initial two-stage pipelined RISC-V processor that uses a BTB for address prediction.
Compile with twostage target.

SixStage.bsv An empty file in which you will extend the two-stage pipeline into a six-stage pipeline.
Compile with sixstage target.

1.3 Testing Improvements

In the previous lab, the command build -v <proc_name> (run from the scemi/sim/ directory) was used to
build bsim dut and tb. In this lab, this command builds <proc_name>_dut instead of bsim dut so switching
between processor types does not delete other processor builds.

Simulation scripts now require you to specify the target processor:

$ ./run_asm.sh <proc_name>

$ ./run_bmarks.sh <proc_name>
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Simulating a single test requires you to run the correct simulation executable:

$ cp ../../programs/build/<assembly|benchmarks>/vmh/<test_name>.riscv.vmh mem.vmh

$ ./<proc_name>_dut > out.txt &

$ ./tb

2 Two-Stage Pipeline: TwoStage.bsv

TwoStage.bsv contains a two-stage pipelined RISC-V processor. This processor differs from the processor
you built in the previous lab because it reads register values in the first stage and there is data hazard.

Discussion Question 1 (10 Points): Debugging practice! If you replace the BTB with a simple pc + 4

address prediction, the processor still works, but it does not perform as well. If you replace it with a really
bad predictor that predicts pc is the next instruction for each pc, it should still work but have even worse
performance because each instruction would require redirection (unless the instruction loops back to itself).
If you actually set the prediction to pc, you will get errors in the assembly tests; the first one will be from
cache.riscv.vmh. What is the error you get? What is happening in the processor to cause that to happen?
Why do not you get this error with PC+4 and BTB predictors? How would you fix it? You do not actually
have to fix this bug, just answer the questions. (Hint: look at the addr field of ExecInst structure.)

3 Six-Stage Pipeline: SixStage.bsv

The six-stage pipeline should be divided into the following stages:

• Instruction Fetch – request instruction from iMem and update PC

• Decode – receive response from iMem and decode instruction

• Register Fetch – read from the register file

• Execute – execute the instruction and redirect the processor if necessary

• Memory – send memory request to dMem

• Write Back – receive memory response from dMem (if applicable) and write to register file

IMemory and DMemory instances should be replaced with instances of FPGAMemory to enable later implemen-
tation on FPGA.

Exercise 1 (20 Points): Starting with the two-stage implementation in TwoStage.bsv, replace each
memory with FPGAMemory and extend the pipeline into a six-stage pipeline in SixStage.bsv. In simulation,
benchmark qsort may take longer time (21 seconds on TA’s desktop, and it may take even longer on vlsifarm
machines).

Notice that the two-stage implementation uses normal register file and conflict-free scoreboard. However
you could use pipelined or bypass versions of these components for better performance. Besides, you may
also want to change the size of scoreboard. You may also want to check the scheduling of the rules to make
sure it is what you expect. The scheduling dump can be found in info dut/mkProc.sched.

Discussion Question 2 (5 Points): What evidence do you have that all stages are able to fire in the
same cycle?

Discussion Question 3 (5 Points): In your six-stage pipelined processor, how many cycles does it take
to correct a mispredicted instruction?
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Discussion Question 4 (5 Points): If an instruction depends on the result of the instruction immediately
before it in the pipeline, how many cycles is that instruction stalled?

Discussion Question 5 (5 Points): What IPC do you get for each benchmark?

3.1 Part A Submission

Check in all of your code for this part of the lab:

riscv-lab6a$ git add src/*

riscv-lab6a$ git add answers/lab6a

riscv-lab6a$ git status # make sure your lab files are added

riscv-lab6a$ git commit -m "Lab 6a submission"

riscv-lab6a$ git push

Part B: Caches and DRAM

By now you have a 6-stage pipelined RISC-V processor. Unfortunately your processor is limited to running
programs that can fit in a 256 KB FPGA block RAM. This works fine for the small benchmark programs we
are running, such as a 250 item quicksort, but most interesting applications are (much) larger than 256 KB.
Luckily the FPGA boards we are using have 1 GB of DDR3 DRAM accessible by the FPGA. This is great
for storing large programs, but this may hurt the performance since DRAM has long latencies when reading
data from them.

This part will focus on using DRAM instead of block RAM for main program and data storage to store
larger programs and adding caches to reduce the performance penalty from long latency DRAM loads.

First you will write a translator module that takes memory requests from the CPU and translates them
to memory requests for DRAM. This module will enable a larger storage space for your programs, but it will
see a large decrease in performance since your are reading from DRAM almost every cycle. Next you will
implement a cache to reduce the amount of times you need to read from the DRAM, therefore improving your
processors performance. Lastly you will synthesize your design for an FPGA and run very large benchmarks
that require DRAM and very long benchmarks that require an FPGA.

4 Part B Harness

Navigate to your git repository’s top directory. Download lab6b-harness.tar.gz from the course website

$ tar xf lab6b-harness.tar.gz

$ git add riscv-lab6b

$ git commit -m "Lab 6b initial commit"

$ cd riscv-lab6b

5 Change in Testing Infrastructure

Since programming FPGA takes times (about 1min), it would take very long to run all tests if we re-program
the FPGA to reset everything before running each test. To reduce the testing time, we only program FPGA
once. After finishing one test, the software test bench (scemi/Tb.cpp) will initiate a soft reset of the
processor states on FPGA, then write the VMH file of the new test program to DRAM, and start the new
test. The software test bench will take in all the VMH files that we want to test as arguments, and perform
tests using each of them. The software test bench will print out the name of the VMH file before starting
each test. In simulation, we will also simulate the process of writing VMH files to DRAM, so the simulation
time will be longer than before.

Below are example commands to simulate a processor named withoutcache, which we will build next,
using assembly tests simple.S and add.S:
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$ cd scemi/sim

$ ./withoutcache_dut > log.txt &

$ ./tb ../../programs/build/assembly/vmh/simple.riscv.vmh ../../programs/build/assembly/vmh/add.riscv.vmh

Here are the sample outputs:

---- ../../programs/build/assembly/vmh/simple.riscv.vmh ----

1196

103

PASSED

---- ../../programs/build/assembly/vmh/add.riscv.vmh ----

5635

427

PASSED

SceMi Service thread finished!

We also provide two scripts run asm.sh and run bmarks.sh to run all assembly tests and benchmarks
respectively. For example, we can use the following commands to test processor withoutcache:

$ ./run_asm.sh withoutcache

$ ./run_bmarks.sh withoutcache

The standard outputs of BSV will be redirected to asm.log and bmarks.log respectively.

6 DRAM Interface

The VC707 FPGA board you will use in this class has 1 GB of DDR3 DRAM. DDR3 memory has a 64 bit
wide data bus, but 8 64 bit chunks are sent per transfer, so effectively it acts like a 512 bit wide memory.
DDR3 memories have high throughput, but they also have high latencies for reads.

The Sce-Mi interface generates a DDR3 controller for us, and it takes in MemoryClient interface to
connect to it. The typedefs provided for you in this part use types from BSV’s Memory package (see
BSV reference guide or source code at $BLUESPECDIR/BSVSource/Misc/Memory.bsv). Here are some of the
typedefs related to DDR3 memory in src/includes/MemTypes.bsv:

1 typedef 24 DDR3AddrSize;
typedef Bit#(DDR3AddrSize) DDR3Addr;

3 typedef 512 DDR3DataSize;
typedef Bit#(DDR3DataSize) DDR3Data;

5 typedef TDiv#(DDR3DataSize, 8) DDR3DataBytes;
typedef Bit#(DDR3DataBytes) DDR3ByteEn;

7 typedef TDiv#(DDR3DataSize, DataSize) DDR3DataWords;

9 // The below typedef is equivalent to this :
// typedef struct {

11 // Bool write;
// Bit#(64) byteen;

13 // Bit#(24) address;
// Bit#(512) data;

15 // } DDR3 Req deriving (Bits, Eq);
typedef MemoryRequest#(DDR3AddrSize, DDR3DataSize) DDR3 Req;

17

// The below typedef is equivalent to this :
19 // typedef struct {

// Bit#(512) data;
21 // } DDR3 Resp deriving (Bits, Eq);

typedef MemoryResponse#(DDR3DataSize) DDR3 Resp;
23

// The below typedef is equivalent to this :
25 // interface DDR3 Client;

// interface Get#( DDR3 Req ) request;
27 // interface Put#( DDR3 Resp ) response;
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// endinterface ;
29 typedef MemoryClient#(DDR3AddrSize, DDR3DataSize) DDR3 Client;

6.1 DDR3 Req

The requests for DDR3 reads and writes are different than the requests of FPGAMemory. The biggest difference
is the byte enable, byteen.

• write – Boolean specifying if this request is a write request or a read request.

• byteen – Byte enable, specifies which 8-bit bytes will be written. This field has no effect for a read
request. If you want to write all 16 bytes (i.e. 512 bits), you will need to set this to all 1’s. You can
do that with the literal ’1 (note the apostrophe) or maxBound.

• address – Address for read or write request. DDR3 memory is addressed in 512-bit chunks, so address
0 refers to the first 512 bits, and address 1 refers to the second 512-bits. This is very different than
the byte addressing used in the RISC-V processor.

• data – Data value used for write requests.

6.2 DDR3 Resp

DDR3 memory only sends responses for reads just like FPGAMemory. The memory response type is a structure
instead of just Bit#(512) so you will have access the data field of the response in order to get the Bit#(512)
value.

6.3 DDR3 Client

The DDR3 Client interface is made up of a Get subinterface and a Put subinterface. This interface is exposed
by the processor, and the Sce-Mi infrastructure connects it to the DDR3 controller. You do not need to
worry about constructing this interface because it is done for you in the example code.

6.4 Example Code

Here is some example code showing how to construct the FIFOs for a DDR3 memory interface along with
the initialization interface for DDR3. This example code is provided in src/DDR3Example.bsv.

1 import GetPut::∗;
import ClientServer ::∗;

3 import Memory::∗;
import CacheTypes::∗;

5 import WideMemInit::∗;
import MemUtil::∗;

7 import Vector::∗;

9 // other packages and type definitions

11 (∗ synthesize ∗)
module mkProc(Proc);

13 Ehr#(2, Addr) pcReg <− mkEhr(?);
CsrFile csrf <− mkCsrFile;

15

// other processor stats and components
17

// interface FIFOs to real DDR3
19 Fifo#(2, DDR3 Req) ddr3ReqFifo <− mkCFFifo;

Fifo#(2, DDR3 Resp) ddr3RespFifo <− mkCFFifo;
21 // module to initialize DDR3

WideMemInitIfc ddr3InitIfc <− mkWideMemInitDDR3( ddr3ReqFifo );
23 Bool memReady = ddr3InitIfc.done;
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25 // wrap DDR3 to WideMem interface
WideMem wideMemWrapper <− mkWideMemFromDDR3( ddr3ReqFifo, ddr3RespFifo );

27 // split WideMem interface to two (use it in a multiplexed way)
// This spliter only take action after reset ( i .e. memReady && csrf.started)

29 // otherwise the guard may fail, and we get garbage DDR3 resp
Vector#(2, WideMem) wideMems <− mkSplitWideMem( memReady && csrf.started, wideMemWrapper );

31 // Instruction cache should use wideMems[1]
// Data cache should use wideMems[0]

33

// some garbage may get into ddr3RespFifo during soft reset
35 // this rule drains all such garbage

rule drainMemResponses( !csrf.started );
37 ddr3RespFifo.deq;

endrule
39

// other rules
41

method ActionValue#(CpuToHostData) cpuToHost if(csrf.started);
43 let ret <− csrf.cpuToHost;

return ret ;
45 endmethod

47 // add ddr3RespFifo empty into guard, make sure that garbage has been drained
method Action hostToCpu(Bit#(32) startpc) if ( !csrf.started && memReady && !ddr3RespFifo.notEmpty );

49 csrf . start (0) ; // only 1 core, id = 0
pcReg[0] <= startpc;

51 endmethod

53 // interface for testbench to initialize DDR3
interface WideMemInitIfc memInit = ddr3InitIfc;

55 // interface to real DDR3 controller
interface DDR3 Client ddr3client = toGPClient( ddr3ReqFifo, ddr3RespFifo );

57 endmodule

In the above example code, ddr3ReqFifo and ddr3RespFifo serve as interfaces to the real DDR3 DRAM. In
simulation, we provide a module mkSimMem to simulate the DRAM, which is instantiated in scemi/SceMiLayer.bsv.
In FPGA synthesis, the DDR3 controller is instantiated in the top-level module mkBridge in $BLUESPECDIR/

board support/bluenoc/bridges/Bridge VIRTEX7 VC707 DDR3.bsv. There is also some glue logic in scemi/

SceMiLayer.bsv.
In the example code, we use module mkWideMemFromDDR3 to translate DDR3_Req and DDR3_Resp types to

a more friendly WideMem interface defined in src/includes/CacheTypes.bsv.

6.5 Sharing the DRAM Interface

The example code exposes a single interface with the DRAM, but you have two modules that will be using
it: an instruction cache and a data cache. If they both send requests to ddr3ReqFifo and they both get
responses from ddr3RespFifo, it is possible for their responses to get mixed up. To handle this, you need
a separate FIFO to keep track of the order the responses should come back in. Each load request is paired
with an enqueue into the ordering FIFO that says who should get the response.

To simplify this for you, we have provided module mkSplitWideMem to split the DDR3 FIFOs into two
WideMem interfaces. This module is defined in src/includes/MemUtils.bsv. To prevent mkSplitWideMem

from taking action to early and exhibiting unexpected behavior, we set its first parameter to memReady&&csrf.started
to freeze it before the processor is started. This also avoids scheduling conflicts with initialization of DRAM
contents.

6.6 Handling Problems in Soft Reset

As mentioned before, you will perform a soft reset of the processor states before starting each new test.
During soft reset, some garbage data may be enqueued into ddr3RespFifo due to some cross clock domain
issues. To handle this problem, we have added a drainMemResponses rule to drain the garbage data, and have
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added a condition that checks whether drainMemResponses is empty into the guard of method hostToCpu.

Suggestion: add csrf.stared to the guard of the rule for each pipeline stage. This prevents the pipeline
from accessing DRAM before the processor is started.

7 Migrating Code from Part A

The provided code for this part is very similar, but there are a few differences to note. Most of the differences
are displayed in the provided example code src/DDR3Example.bsv.

7.1 Modified Proc Interface

The Proc interface now only has a single memory initialization interface to match the unified DDR3 memory.
The width of this memory initialization interface has been expanded to 512 bits per transfer. The new type
of this initialization interface is WideMemInitIfc and it is implemented in src/includes/WideMemInit.bsv.

7.2 Empty Files

The two processor implementations for this part of the lab: src/WithoutCache.bsv and src/WithCache.bsv

are initially empty. You should copy over the code from SixStage.bsv as a starting point for these processors.

7.3 New Files

Here is the summary of new files provided under the src/includes folder:

Cache.bsv An empty file in which you will implement cache modules.

CacheTypes.bsv A collection of type and interface definitions about caches.

MemUtil.bsv A collection of useful modules and functions about DDR3 and WideMem.

SimMem.bsv DDR3 memory used in simulation. It has a 10-cycle pipelined access latency, but extra glue
logic may add more to the total delay of accessing DRAM in simulation.

WideMemInit.bsv Module to initialize DDR3.

There are also changes in MemTypes.bsv.

8 WithoutCache.bsv – Using the DRAM Without a Cache

Exercise 2 (10 Points): Implement a module mkTranslator in Cache.bsv that takes in some inter-
face related to DDR3 memory (WideMem for example) and returns a Cache interface (see CacheTypes.bsv).
This module should not do any caching, just translation from MemReq to requests to DDR3 (WideMemReq if
using WideMem interfaces) and translation from responses from DDR3 (CacheLine if using WideMem inter-
faces) to MemResp. This will require some internal storage to keep track of which word you want from the
cache line that comes back from main memory. Integrate mkTranslator into a six stage pipeline in the file
WithoutCache.bsv (i.e. you should no longer use mkFPGAMemory here). You can build this processor by run-
ning build -v withoutcache from scemi/sim/, and you can test this processor by running ./run asm.sh

withoutcache and ./run bmarks.sh withoutcache from scemi/sim/.

Discussion Question 6 (5 Points): Record the results for ./run bmarks.sh withoutcache. What IPC
do you see for each benchmark?
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9 WithCache.bsv – Using the DRAM With a Cache

By running the benchmarks with simulated DRAM, you should have noticed that your processor slows down
a lot. You can speed up your processor again by remembering previous DRAM loads in a cache as described
in class.

Exercise 3 (20 Points): Implement a module mkCache to be a direct mapped cache that allocates on
write misses and writes back only when a cache line is replaced. This module should take in a WideMem

interface (or something similar) and expose a Cache interface. Use the typedefs in CacheTypes.bsv to size
your cache and for the Cache interface definition. You can use either vectors of registers or register files to
implement the arrays in the cache, but vectors of registers are easier to specify initial values. Incorporate
this cache in the same pipeline from WithoutCache.bsv and save it in WithCache.bsv. You can build this
processor by running build -v withcache from scemi/sim/, and you can test this processor by running
./run asm.sh withcache and ./run bmarks.sh withcache from scemi/sim/.

Discussion Question 7 (5 Points): Record the results for ./run bmarks.sh withcache. What IPC do
you see for each benchmark?

10 Running Large Programs

By adding support for DDR3 memory, your processor can now run larger programs than the small bench-
marks we have been using. Unfortunately, these larger programs take longer to run, and in many cases,
it will take too long to wait for the simulation to finish. Now is a great time to try FPGA synthesis. By
implementing your processor on an FPGA, you will be able to run these large programs much faster since
the design is running in hardware instead of software.

Exercise 4 (0 Points, but you should still totally do this): Before synthesizing for an FPGA, lets
try looking at a program that takes a long time to run in simulation. The program ./run mandelbrot.sh

runs a benchmark that prints a square image of the Mandelbrot set using 1’s and 0’s. Run this benchmark
to see how slow it runs in real time. Please don’t wait for this benchmark to finish, just kill it early using
ctrl-c.

10.1 Synthesizing for FPGA

You can start FPGA synthesis for WithCache.bsv by going into the scemi/fpga vc707 folder and executing
the command:

$ vivado_setup build -v

This command will take a lot of time (about one hour) and a lot of computation resources. You will probably
want to select a vlsifarm/bdbm server that is under a light load.

10.2 Running on the FPGA

Ensure that your design has met timing by checking the timing report. Log onto one of the FPGA servers
listed in the Resources section of the course website. Check that no one else is using the FPGA with w and
top commands. Program the FPGA and run the benchmarks.

fpga_vc707$ programfpga xilinx/mkBridge.bit

fpga_vc707$ ./run_bmarks.sh

Exercise 5 (10 Points): Synthesize WithCache.bsv for the FPGA and program the bitfile. Get the
results for the benchmarks and add them to your answers text file.
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Discussion Question 8 (10 Points): How many cycles does the Mandelbrot program take to execute
in your processor? The current FPGA design has an effective clock speed of 50 MHz. How long does the
Mandelbrot program take to execute in seconds? Estimate how much of a speedup you are seeing in hardware
versus simulation by estimating how long (in wall clock time) it would take to run ./run mandelbrot.sh in
simulation.

10.3 Part B Submission

Check in all of your code for this part of the lab:

riscv-lab6b$ git add src/*

riscv-lab6b$ git add answers/lab6b

riscv-lab6b$ git status # make sure your lab files are added

riscv-lab6b$ git commit -m "Lab 6b submission"

riscv-lab6b$ git push
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