6.375: Complex Digital Systems

Lecturer: Arvind
TA: Ming Liu
Administration: Sally Lee

February 3, 2016 http://csg.csail.mit.edu/6.375

Why take 6.375

- Something new and exciting as well as useful
- Fun: Design systems that you never thought you could design in a course
 - made possible by large FPGAs and Bluespec

You will also discover that is possible to design complex digital systems with little knowledge of circuits
New, exciting and useful ...

Wide Variety of Products Rely on ASICs

ASIC = Application-Specific Integrated Circuit
What’s required?

ICs with dramatically higher performance, optimized for applications

and at a

- size and power to deliver mobility
- cost to address mass consumer markets

Cell Phones: Samsung Galaxy S III April 2012

Quad core ARM is just one of the complex blocks

16GB NAND flash

Samsung Exynos Quad:
- quad-core A9
- 1GB DDR2 (low power)
- Multimedia processor

power consumption <1W
Cell Phones:
Samsung Galaxy S III April 2012

- Quad core ARM is just one of the complex blocks
- Power consumption <1W
- Multimedia processor
- Samsung Exynos Quad:
 - quad-core A9
 - 1GB DDR2 (low power)

Server microprocessors also need specialized blocks

- compression/decompression
- encryption/decryption
- intrusion detection and other security related solutions
- Dealing with spam
- Self diagnosing errors and masking them
- ...
Real power saving implies specialized hardware

- H.264 video decoder implementations in software vs. hardware
 - the power/energy savings could be 100 to 1000 fold

but our mind set is that hardware design is:

- Difficult, risky
 - Increases time-to-market
- Inflexible, brittle, error prone, ...
 - Difficult to deal with changing standards, ...

New design flows and tools can change this mind set

Will multicores reduce the need for new hardware?

Unlikely – because of power and performance

64-core Tilera
SoC & Multicore Convergence: more application specific blocks

Application-specific processing units

On-chip memory banks

General-purpose processors

Structured on-chip networks

To reduce the design cost of SoCs we need ...

- Extreme IP reuse
 - Multiple instantiations of a block for different performance and application requirements
 - Packaging of IP so that the blocks can be assembled easily to build a large system (black box model)
- Architectural exploration to understand cost, power and performance tradeoffs
- Full system simulations for validation and verification
Hardware design today is like programming was in the fifties, i.e., before the invention of high-level languages.

Programmers had to know many detail of their computer.

An IBM 650 Instruction: 60 1234 1009

“Load the contents of location 1234 into the distribution; put it also into the upper accumulator; set lower accumulator to zero; and then go to location 1009 for the next instruction.”
Programmers had to know many detail of their computer. Can you program a computer without knowing, for example, how many registers it has?

IBM 650 (1954)

Fortran changed this mind set (1956)

For designing complex SoCs deep circuits knowledge is secondary. Using modern high-level hardware synthesis tools like Bluespec requires computer science training in programming and architecture rather than circuit design.
Bluespec A new way of expressing behavior

- A formal method of composing modules with parallel interfaces (ports)
 - Compiler manages muxing of ports and associated control
- Powerful and zero-cost parameterization of modules
 - Encapsulation of C and Verilog codes using Bluespec wrappers
 - Helps Transaction Level modeling

- Smaller, simpler, clearer, more correct code
- not just simulation, synthesis as well

IP Reuse via parameterized modules

Example OFDM based protocols

- Reusable algorithm with different parameter settings
- Different throughput requirements
- Different algorithms

(Alfred) Man Cheuk Ng, ...
IP Reuse via parameterized modules

Example OFDM based protocols

- Reusable algorithm with different parameter settings
- Different throughput requirements
- Different algorithms

WiFi: x^7+x^4+1
WiMAX: $x^{15}+x^{14}+1$
WUSB: $x^{15}+x^{14}+1$

WiFi: 64pt @ 0.25MHz
WiMAX: 256pt @ 0.03MHz
WUSB: 128pt 8MHz

(Alfred) Man Cheuk Ng, ...
IP Reuse via parameterized modules
Example OFDM based protocols

- Reusable algorithm with different parameter settings
- Different throughput requirements
- Different algorithms

(Alfred) Man Cheuk Ng, ...
February 3, 2016
http://csg.csail.mit.edu/6.375
L01-21

85% reusable code between WiFi and WiMAX
From WiFi to WiMAX in 4 weeks
High-level Synthesis from Bluespec

First simulate
Second run on FPGAs
We won't explore the chip design path

February 3, 2016 http://csg.csail.mit.edu/6.375 L01-23

Chip Design Styles

- Custom and Semi-Custom
 - Hand-drawn transistors (+ some standard cells)
 - High volume, best possible performance: used for most advanced microprocessors
- Standard-Cell-Based ASICs
 - High volume, moderate performance: Graphics chips, network chips, cell-phone chips
- Field-Programmable Gate Arrays
 - Prototyping
 - Low volume, low-moderate performance applications

Different design styles have vastly different costs

February 3, 2016 http://csg.csail.mit.edu/6.375 L01-24
Exponential growth: Moore’s Law

Intel 8080A, 1974
3MHz, 6K transistors, 6μ

Intel 8086, 1978, 33mm²
10MHz, 29K transistors, 3μ

Intel 80286, 1982, 47mm²
12.5MHz, 134K transistors, 1.5μ

Intel 80386, 1985, 81mm²
50MHz, 1.2M transistors, 8μ

80MHz, 3.1M transistors, 8μ/6μ/5μ

Intel Pentium II, 1997, 203mm²/104mm²
300/333MHz, 7.9M transistors, 35μ/25μ

Shown with approximate relative sizes

February 3, 2016
http://csg.csail.mit.edu/6.375/L01-25

Intel Ivy Bridge 2012

- Quad core
- Quad-issue out-of-order superscalar processors
- Caches:
 - L1 64 KB/core
 - L2 256 KB/core
 - L3 6 MB shared
- 22nm technology
- 1.4 Billion transistors
- 3.4 GHz clock frequency
- Power > 17 Watts (under clocked)

Could fit over 1200 486 processors on same size die.
But Design Effort is Growing

Nvidia Graphics Processing Units

Front-end is designing the logic (RTL)
Back-end is fitting all the gates and wires on the chip; meeting timing specifications; wiring up power, ground, and clock

Transistors (M)

Relative staffing on back-end
9x growth in back-end staff

Relative staffing on front-end
5x growth in front-end staff

Design Cost Impacts Chip Cost

An Altera study

- Non-Recurring Engineering (NRE) costs for a 90nm ASIC is ~ $30M
 - 59% chip design (architecture, logic & I/O design, product & test engineering)
 - 30% software and applications development
 - 11% prototyping (masks, wafers, boards)

- If we sell 100,000 units, NRE costs add
 $30M/100K = $300 per chip!

Alternative: Use FPGAs

Hand-crafted IBM-Sony-Toshiba Cell microprocessor achieves 4GHz in 90nm, but at the development cost of >$400M
Field-Programmable Gate Arrays (FPGAs)

- Arrays mass-produced but programmed by customer after fabrication
 - Can be programmed by loading SRAM bits, or loading FLASH memory
- Each cell in array contains a programmable logic function
- Array has programmable interconnect between logic functions
- Overhead of programmability makes arrays expensive and slow as compared to ASICs
- However, much cheaper than an ASIC for small volumes because NRE costs do not include chip development costs (only include programming)

FPGA Pros and Cons

Advantages
- Dramatically reduce the cost of errors
- Little physical design work
- Remove the reticle costs from each design

Disadvantages (as compared to an ASIC)
- [Kuon & Rose, FPGA2006]
 - Switching power around ~12X worse
 - Performance up 3-4X worse
 - Area 20-40X greater

Still requires tremendous design effort at RTL level
FPGAs: a new opportunity

- “Big” FPGAs have become widely available
 - A multicore can be emulated on one FPGA
 - but the programming model is RTL and not too many people design hardware
- Enable the use of FPGAs via Bluespec

6.375 Philosophy

- Effective abstractions to reduce design effort
 - High-level design language rather than logic gates
 - Control specified with Guarded Atomic Actions rather than with finite state machines
 - Guarded module interfaces to systematically build larger modules by the composition of smaller modules
- Design discipline to avoid bad design points
 - Decoupled units rather than tightly coupled state machines
- Design space exploration to find good designs
 - Architecture choice has largest impact on solution quality

We learn by doing actual designs
6.375 Complex Digital Systems: past projects

- Optical flow in Harvard Robo Bee project
- Spinal Codes for Wireless Communication
- Beat tracker
- H.265 Motion Estimation for video compression
 - A chip was fabricated later
- Hard Viterbi Decoder
- Video motion magnification
- RSA
- Programmable packet filter for 1Gbps stream

Fun: Design systems that you thought you would never design in a course

Resources – beyond TA, mentors and classmates

- Lecture slides (with animation)
 - Make sure you understand the lectures before exploring other materials
 - Uses Executable and Synthesizable processor Specifications
- BSV By Example, Rishiyur S. Nikhil and Kathy R. Czeck (2010)
- Bluespec System Verilog Reference manual
 - You will need to refer to this often
- Bluespec System Verilog Users guide
 - How to use all the tools for developing BSV programs