Introduction to Bluespec: A new
methodology for designing
Hardware

Arvind
Computer Science & Artificial Intelligence Lab.
Massachusetts Institute of Technology

February 5, 2016 http://csg.csail.mit.edu/6.375

L02-1

What is needed to make
hardware design easier

§
@ Extrem reuse Intellectual Property

= Multiple instantiations of a block for
different performance and application
requirements

» Packaging of IP so that the blocks can be
assembled easily to build a large system
(black box model)

@ Ability to do modular refinement

@ Whole system simulation to enable
concurrent hardware-software
development

February 5, 2016 http://csg.csail.mit.edu/6.375

LO2-2

IP Reuse sounds wonderful
until you try it ...

data_in data_out

Example: Commercially available N p“Sh—'qu—” fanl)
FIFO IP block (pop Teq_nyelP yD
An error occurs if a push is attempted while the FIFO is full. C”:
rstn

Thus, there is no conflict in a simultaneous push and pop when the FIFO is full. A
simultaneous push and pop cannot occur when the FIFO is empty. since there is no pop

data to prefetch. However. push data 1s captured in the FIFO.

A pop operation occurs when pop req nis asserted (LOW). as long as the FIFO is not

empty. Asserting pop_req n causes the internal read poinier to be mcremented on the
next rising edge of clk. Thus, the RAM read data must be captured on the c1k following

the assertion of pop_req n.

These constraints are spread over many pages of
the documentation...

http://csg.csail.mit.edu/6.375 LO2-3

February 5, 2016

IP Reuse sounds wonderful
until you try it ...

data_in data_out

Qrmnrea_n) (&)

Example: Commercially available
FIFO IP block g P y)
. . . . clk
An error occurs if a push is attempted while the EL 5 rstn

nen the FIFO is full. A
—

simultaneous push and pop e ; FO is empty. since there is no pop
V) m the FIFO.

These constraints are spread over many pages of

the documentation... .
Bluespec can change all this

http://csg.csail.mit.edu/6.375

February 5, 2016 LO2-4

theModuleA

Bluespec promotes composition
through guarded interfaces

theFifo.deq();

theFifo.enqg(valuel);

value2 = thefFifo.first();

theModuleB

theFifo.eng(value3)

theFifo.deq();

value4 = theFifo.first();

February 5, 2016

http://csg.csail.mit.edu/6.375

theFifo
— 0,
enab

“Tdy |

enab
o FIFO

first q enq

21ad

LO2-5

theModuleA

Bluespec promotes composition
through guarded interfaces

theFifo.enq(veltuet);

Enqueue

Self-documenting
interfaces;

Automatic generation
of logic to eliminate
conflicts in use.

theFifo

\ arbitration
control \

theFifo.deq(); 74_&

value2 = theFi o.first‘%(\

theModuleB

theFifo.eng(value3);

N

1 Dequeue
/1 arbitration

theFifo.deq()—

value4 = theFifo.f#st();

control

February 5, 2016

http://csg.csail.mit.edu/6.375

enab'|g| FIFO
=

<
first q enq

LO2-6

EIREEES: A new way of expressing
behavior using Guarded Atomic Actions

@ Formalizes composition
» Modules with guarded interfaces

s Compiler manages connectivity (muxing
and associated control)

@ Powerful static elaboration facility

= Permits parameterization of designs at all
levels

® Transaction level modeling

» Allows C and Verilog codes to be
encapsulated in Bluespec modules

‘-) Smaller, simpler, clearer, more correct code

\-) not just simulation, synthesis as well

February 5, 2016 http://csg.csail.mit.edu/6.375

LO2-7

Bluespec: State and Rules
organized into modules

l

SSa

7

H P
interface| | f i %\

—

All state (e.g., Registers, FIFOs, RAMs, ...) is explicit.

Behavior is expressed in terms of atomic actions on the state:

Rule: guard = action

Rules can manipulate state in other modules only via their
interfaces.

February 5, 2016 http://csg.csail.mit.edu/6.375

LO2-8

' GCD: A simple example to
explain hardware

generation from Bluespec

February 5, 2016 http://csg.csail.mit.edu/6.375

L02-9

Programming with
rules: A simple example

Euclid’s algorithm for computing the
Greatest Common Divisor (GCD):

15 6
9 6 subtract
3 6 subtract
6 3 swap
3 3 subtract
0) answer: @ subtract

February 5, 2016 http://csg.csail.mit.edu/6.375

L02-10

GCD in BSV

b
module mkGCD (1_GCD);

Reg#(Int#(32)) X <- mkRegU; State
Reg#(Int#(32)) y <- mkReg(0);
/" rule swap ((Xx > Yy) & (y '= 0)):
endrﬁlzz y: ¥ ==X Internal
_ _ L behavior
rule subtract ((x <= y) && (y = 0));
y <=y —X;
_ endrule
// method Action start(Int#(32) a, Int#(32) b)
if (y==0);
x <= a; y <=/6; If (a==0) then O else b 51?;;21
endmethod
method Int#(32) result() if (y==0);
return x;
. sndnethod
February 5?9(9@0(“" le http://csg.csail.mit.edu/6.375 L02-11

GCD Hardware Module

INtAA(32)
Int#(32) | & In a GCD call t
enab g " could be
rdy | as Int#(32),
implicit 8 '8 uiInt#(16),
i e £ Int#(13), ...
conditions Int4(32) |=
rdy 7
S

interface 1 _GCD;
method Action start (Int#(32) a, Int#(32) b);
method Int#(32) result();

endinterface

@ The module can easily be made polymorphic

#® Many different implementations can provide the same
interface: module mkGCD (1_GCD)

February 5, 2016 http://csg.csail.mit.edu/6.375 LO2-12

GCD Hardware Module

* t
Int: —
ﬁ:t In a GCD call t
%.g could be
Jy o= Int#(32),
implicit 8 = UInt#(16),
iti T g Int#(13), ...
conditions |nt§g22 =
rdy 8
#(type t) L=

interface 1_GCD%
method Action start (Int#(§25 a, Int#(@Z} b);
method Int#(ng result();

endinterface

#® The module can easily be made polymorphic

@ Many different implementations can provide the same
interface: module mkGCD (1_GCD)

February 5, 2016 http://csg.csail.mit.edu/6.375 L02-13

GCD:
Another implementation

module mkGCD (1_GCD);
Reg#(Int#(32)) x <- mkRegU; Combine swap
Reg#(INt#(32)) y <- mkReg(O%y///ﬂﬂ_ and subtract rule

rule swapANDsub ((x > y) && (y != 0));
X <=Yy; Yy <=X-Y;

endrule

rule subtract ((x<=y) && (y!=0));
y <=y = X;

endrule

method Action start(Int#(32) a, Int#(32) b)

it (y==0);
X <= a; Yy <= b;
endmethod
method Int#(32) result() if (y==0);
return Xx; Does it compute faster ?
endmethod i
endmodule Does it take more resources ?

February 5, 2016 http://csg.csail.mit.edu/6.375 L02-14

High-level Synthesis from

Bluespec

/\

$Iuespec Systemvﬁiloh sourcé

Blizspec Compiler

Bluesim

First simulate

Second run on FPGAs

We won'’t explore the

chip design path

Accurate

Ver@sim

thesis

RTL s

Debussy
Visualization

Power
estimation
tool

February 5, 2016

Place & /\,
Route /° X PGA
v P
<
Taggbut = \x
L02-15

http://csg.csail.mit.edu/6.37

Generated Verilog RTL:

‘GCD

module mkGCD(CLK,RST_N,start_a,start_b,EN_start,RDY_start,
result,RDY_result);

input CLK;

input RST_N;

// action method start

input [31 :

// value method
output [31 :

reg [31
wire [31 :
reg [31 : 0] vy;
wire [31 :

- 0] x;

// rule RL_subtract

0] start_a;
output RDY_start;

result
0] result; output RDY_result;
// register x and y

input [31

0] x$D_IN; wire x$EN;

0] y$D_IN; wire y$EN;

: 0] start_b;

input EN_start;

assign WILL_FIRE_RL_subtract = x_ SLE y d3 && !y EQ O dio ;

// rule RL_swap

assign WILL_FIRE_RL_swap = Ix SLE .y d3 && 'y EQ O dio ;

February 5, 2016

http://csg.csail.mit.edu/6.375

L02-16

Generated Hardware

X] >
y L,
en 9
rdy A x_en
E=
X < =
rdy <
g
swap? subtract?

rule swap ((x>y)&&(y!=0)); x_en = swap?

Y Snarule _en = swap? OR subtract?
rule subtract ((x<=y)&&(y!=0)); y_en= p: -
y <=y - X; endrule

February 5, 2016

http://csg.csail.mit.edu/6.375

L02-17

Generated Hardware Module

‘
X = j
y e
en 9 starnt_pn ¢ start_en
oy xen L]
]
=
X < =i
rdy < 8
o }
swap? subtract?

X_en = swap? OR start_en
y_en = swap? OR subtract? OR start_en

rdy = (y==0)

http://csg.csail.mit.edu/6.375

February 5, 2016

L02-18

GCD: A Simple Test Bench

T/module mkTest ();

Reg#(Int#(32)) state <- mkReg(0);

1_GCD gcd <- mkGCDQ); Why do we need
the state variable?

rule go (state == 0);
gcd.start (423, 142); I.S t_her? any
I timing issue in
state <= 1; displaying the
endrule result?

rule finish (state == 1);
$display (“GCD of 423 & 142 =%d”,gcd.result());
state <= 2;
endrule
endmodule

February 5, 2016 http://csg.csail.mit.edu/6.375 L02-19

GCD: Test Bench

g
module mkTest (); Feeds all pairs (c1,c2)
Reg#(Int#(32)) state <- mkReg(0); l<cl<?7

Reg#(Int#(4)) cl <- mkReg(1);
Reg#(Int#(7)) c2 <- mkReg(1); 1=.c2.<63
1_GCD gcd <- mkGCDQ); to GCD
rule req (state==0);
gcd.start(signExtend(cl), signExtend(c2));

state <= 1;
endrule

rule resp (state==1);
$display (“GCD of %d & %d =%d”, cl, c2, gcd.result());
if (cl==7) begin cl <= 1; c2 <= c2+1; end
else cl <= cl+1;
if (cl==7 && c2==63) state <= 2 else state <= 0;
endrule
endmodule

February 5, 2016 http://csg.csail.mit.edu/6.375 L02-20

GCD: Synthesis results

® Original (16 bits)
» Clock Period: 1.6 ns
= Area: 4240 um?

@ Unrolled (16 bits)
» Clock Period: 1.65ns
= Area: 5944 um?2

® Unrolled takes 31% fewer cycles on the
testbench

February 5, 2016 http://csg.csail.mit.edu/6.375

L02-21

' Hardware synthesis and
rule scheduling

February 5, 2016 http://csg.csail.mit.edu/6.375

L02-22

11

Rule: As a State Transformer

A rule may be decomposed into two parts
n(s) and 3(s) such that

Shext — If m(S) then 3(s) else s

n(s) is the condition (predicate) of the rule,
a.k.a. the “CAN_FIRE” signal of the rule. nis
a conjunction of explicit and implicit
conditions

3(s) is the “state transformation” function,
i.e., computes the next-state values from the
current state values

February 5, 2016 http://csg.csail.mit.edu/6.375

Compiling a Rule

rule r (f.first() > 0) ;
x<=x+1; fdeq(;

February 5, 2016

http://csg.csail.mit.edu/6.375

endrule
— enable
’ T
next
current ta
state rdy signals enable signals state
read method action values
parameters
n = enabling condition
8 = action signals & values

L02-24

12

Combining State Updates:

s Jor |

strawman

[/

7's from the rules
that update R

Js from the rules
that update R

Ty

8n,R >

Ly |

latch
enable

next state .

value

What if more than one rule is enabled?

February 5, 2016 http://csg.csail.mit.edu/6.375 L02-25
N
Need for a rule scheduler
&
February 5, 2016 http://csg.csail.mit.edu/6.375 L02-26

13

GAA Execution model

Repeatedly:
@ Select a rule to execute
@® Compute the state updates

#® Make the state updates

February 5, 2016

http://csg.csail.mit.edu/6.375

L02-27

Combining State Updates

os fro
that

February 5, 2016

7's from all
the rules

Ty

Tn ’

Priority

Scheduler:| | . a-time
OR [
Encoder

5
m the rules LR

update R

8n,R

latch
enable

> value

Scheduler ensures that at most one ¢ is true

http://csg.csail.mit.edu/6.375

- one-rule-at-

scheduler is
conservative

next state .

L02-28

14

A compiler can determine if two
rules can be executed in parallel
without violating the one-rule-

at-a-time semantics

James Hoe, Ph.D., 2000

February 5, 2016

http://csg.csail.mit.edu/6.375

L02-29

Scheduling and control logic

.
“Modules Rules ~‘CAN_FIRE" “WILL_FIRE” Modules
(Current state) 1 b1 (Next state)

l T [. Scheduler | -
Tcn (I)n ﬁ
B .
LA |
O N
L) (] L]
. 5, -
l cond Ty > —
. : Muxing
action| § ° LA |
0 iy i .

Ve

Compiler synthesizes a scheduler such that at any N\

given time ¢’s for only non-conflicting rules are true
http://csg.csail.mit.edu/6.375

February 5, 2016

L02-30

15

The plan

#® Combinational circuits in Bluespec
@ Sequential circuits using rules
@ Inelastic pipelines
m single-rule systems; no scheduling issues

@ Multiple rule systems and concurrency issues
= Eliminating dead cycles

@ Elastic pipelines and processors

Minimal discussion of Bluespec syntax in

Each idea would be illustrated via examples

the lectures; you are suppose to learn that
by yourself and in the lab sessions

February 5, 2016 http://csg.csail.mit.edu/6.375

L02-31

16

