
1

Folded Combinational
Circuits as an example of
Sequential Circuits

Arvind
Computer Science & Artificial Intelligence Lab
Massachusetts Institute of Technology

February 10, 2016 http://csg.csail.mit.edu/6.375 L04-1

Folding large
combinational circuits

A common way to implement large
combinational circuits is by folding where
registers hold the state from one iteration to
the next
 Implementing imperative loops
 Multiplication
 IFFT

February 10, 2016 http://csg.csail.mit.edu/6.375 L04-2

2

Flip flop: The basic building
block of Sequential Circuits

ff QD

C

C
D
Q

Metastability

Data is sampled at the rising edge of the clock

Edge-Triggered Flip-flop

February 10, 2016 http://csg.csail.mit.edu/6.375 L04-3

Flip-flops with Write Enables

ff QD

C

EN

C

D

Q

EN

ff QD
C

EN

0
1

ff QD

C
EN

dangerous!

Data is captured only if EN is on
February 10, 2016 http://csg.csail.mit.edu/6.375 L04-4

3

Registers

Register: A group of flip-flops with a common
clock and enable

Register file: A group of registers with a common
clock, input and output port(s)

ff

D

ff

D

ff

D

ff

D

ff

D

ff

D

ff

D

ff

QQQQQQQQ

D

C
En

February 10, 2016 http://csg.csail.mit.edu/6.375 L04-5

Expressing a loop using
registers
int s = s0;
for (int i = 0; i < 32; i = i+1) {

s = f(s);
}

return s; C-code

sel

< 32

0

notDone

+1

ien sel =
en =

s0f

sel

sen

We need two registers
to hold s and i values
from one iteration to
the next.
These registers are
initialized when the
computation starts and
updated every cycle
until the computation
terminates

February 10, 2016 http://csg.csail.mit.edu/6.375 L04-6

4

Expressing sequential
circuits in BSV

Sequential circuits, unlike combinational
circuits, are not expressed structurally (as
wiring diagrams) in BSV
For sequential circuits a designer defines:
 State elements by instantiating modules

Reg#(Bit#(32)) s <- mkRegU();
Reg#(Bit#(6)) i <- mkReg(32);

 Rules which define how state is to be transformed
atomically
rule step if (i < 32);
s <= f(s);
i <= i+1;

endrule

make a 32-bit
register which is
uninitialized

make a 6-bit
register with
initial value 32

the rule can
execute only when
its guard is trueactions to be

performed when
the rule executes

February 10, 2016 http://csg.csail.mit.edu/6.375 L04-7

Rule Execution

< 32

notDone

+1

sel

0

ien

sel = start
en = start | notDone

f s0

sel

sen

Reg#(Bit#(32)) s <- mkRegU();
Reg#(Bit#(6)) i <- mkReg(32);

rule step if (i < 32);
s <= f(s);
i <= i+1;

endrule

When a rule executes:
 all the registers are read

at the beginning of a
clock cycle

 the guard and
computations to
evaluate the next value
of the registers are
performed

 at the end of the clock
cycle registers are
updated iff the guard is
true

Muxes are need to
initialize the registers

February 10, 2016 http://csg.csail.mit.edu/6.375 L04-8

5

Multiplication by repeated
addition

1101 (13)
1011 (11)

0000
+ 1101

01101
+ 1101

100111
+ 0000
0100111

+ 1101
10001111 (143)

b Multiplicand
a Muliplier *

tp
m0
tp
m1
tp
m2
tp
m3
tp

mi = (a[i]==0)? 0 : b;

a1 m1

a2 m2

a3 m3

add4

0

add4

add4

a0 m0

February 10, 2016 http://csg.csail.mit.edu/6.375 L04-9

Combinational 32-bit multiply
function Bit#(64) mul32(Bit#(32) a, Bit#(32) b);
Bit#(32) tp = 0;
Bit#(32) prod = 0;
for(Integer i = 0; i < 32; i = i+1)
begin

Bit#(32) m = (a[i]==0)? 0 : b;
Bit#(33) sum = add32(m,tp,0);
prod[i:i] = sum[0];
tp = sum[32:1];

end
return {tp,prod};

endfunction

Combinational
multiply uses 31
add32 circuits

We can reuse the same add32 circuit if we store
the partial results in a register

February 10, 2016 http://csg.csail.mit.edu/6.375 L04-10

6

Design issues with
combinational multiply

Lot of hardware
 32-bit multiply uses 31 add32 circuits
Long chains of gates
 32-bit ripple carry adder has a 31-long

chain of gates
 32-bit multiply has 31 ripple carry adders in

sequence! Total delay ?

The speed of a combinational circuit is
determined by its longest input-to-output path

Can we do better?

February 10, 2016 http://csg.csail.mit.edu/6.375 L04-11

Multiply using registers
function Bit#(64) mul32(Bit#(32) a, Bit#(32) b);
Bit#(32) prod = 0;
Bit#(32) tp = 0;
for(Integer i = 0; i < 32; i = i+1)
begin

Bit#(32) m = (a[i]==0)? 0 : b;
Bit#(33) sum = add32(m,tp,0);
prod[i:i] = sum[0];
tp = sum[32:1];

end
return {tp,prod};

endfunction

Need registers to hold a, b, ...?

Update the registers every cycle until we are done

Combinational
version

February 10, 2016 http://csg.csail.mit.edu/6.375 L04-12

7

Sequential Circuit for Multiply
Reg#(Bit#(32)) a <- mkRegU();
Reg#(Bit#(32)) b <- mkRegU();
Reg#(Bit#(32)) prod <-mkRegU();
Reg#(Bit#(32)) tp <- mkReg(0);
Reg#(Bit#(6)) i <- mkReg(32);

rule mulStep if (i < 32);
Bit#(32) m = (a[i]==0)? 0 : b;
Bit#(33) sum = add32(m,tp,0);
prod[i] <= sum[0];
tp <= sum[32:1];
i <= i+1;

endrule

state
elements

a rule to
describe

the
dynamic
behavior

So that the rule has
no effect until i is set
to some other value

similar to the
loop body in the
combinational
version

February 10, 2016 http://csg.csail.mit.edu/6.375 L04-13

Dynamic selection
requires a mux

a[i]a

i

a[0],a[1],a[2],…
a

>>

0

when the selection
indices are regular then
it is better to use a shift
operator (no gates!)

February 10, 2016 http://csg.csail.mit.edu/6.375 L04-14

8

Replacing repeated
selections by shifts

Reg#(Bit#(32)) a <- mkRegU();
Reg#(Bit#(32)) b <- mkRegU();
Reg#(Bit#(32)) prod <-mkRegU();
Reg#(Bit#(32)) tp <- mkReg(0);
Reg#(Bit#(6)) i <- mkReg(32);

rule mulStep if (i < 32);
Bit#(32) m = (a[0]==0)? 0 : b;
a <= a >> 1;
Bit#(33) sum = add32(m,tp,0);
prod <= {sum[0], prod[31:1]};
tp <= sum[32:1];
i <= i+1;

endrule

February 10, 2016 http://csg.csail.mit.edu/6.375 L04-15

Circuit for Sequential
Multiply

bIn

b

ai

== 32

0

done

+1

prod

result (low)

[30:0]

aIn

<<

31:0

tp

s1 s1

s1

s2 s2 s2 s2

s1

s1 = start_en
s2 = start_en | !done

result (high)

31
0

add

0

0

32:1

0

<<

February 10, 2016 http://csg.csail.mit.edu/6.375 L04-16

9

Circuit analysis
Number of add32 circuits has been reduced
from 31 to one, though some registers and
muxes have been added
The longest combinational path has been
reduced from 62 FAs to to one add32 plus a
few muxes
The sequential circuit will take 31 clock cycles
to compute an answer

February 10, 2016 http://csg.csail.mit.edu/6.375 L04-17

Combinational IFFT
in0

…

in1

in2

in63

in3

in4

Bfly4

Bfly4

Bfly4

x16

Bfly4

Bfly4

Bfly4

…

Bfly4

Bfly4

Bfly4

…

out0

…

out1

out2

out63

out3

out4

Perm
ute

Perm
ute

Perm
ute

Reuse the same circuit three times
to reduce area

February 10, 2016 http://csg.csail.mit.edu/6.375 L04-18

10

Folded IFFT: Reusing the
Stage computation

in0

…

in1

in2

in63

in3

in4

out0

…

out1

out2

out63

out3

out4

…

Bfly4

Bfly4

Perm
ute

Stage
Counter

February 10, 2016 http://csg.csail.mit.edu/6.375 L04-19

BSV Code for stage_f
function Vector#(64, Complex#(n)) stage_f

(Bit#(2) stage, Vector#(64, Complex#(n)) stage_in);
Vector#(64, Complex#(n)) stage_temp, stage_out;

for (Integer i = 0; i < 16; i = i + 1)
begin
Integer idx = i * 4;
Vector#(4, Complex#(n)) x;
x[0] = stage_in[idx]; x[1] = stage_in[idx+1];
x[2] = stage_in[idx+2]; x[3] = stage_in[idx+3];
let twid = getTwiddle(stage, fromInteger(i));
let y = bfly4(twid, x);
stage_temp[idx] = y[0]; stage_temp[idx+1] = y[1];
stage_temp[idx+2] = y[2]; stage_temp[idx+3] = y[3];

end
//Permutation
for (Integer i = 0; i < 64; i = i + 1)

stage_out[i] = stage_temp[permute[i]];
return(stage_out);

endfunction

twid’s are
mathematically

derivable
constants

February 10, 2016 http://csg.csail.mit.edu/6.375 L04-20

11

Higher-order functions:
Stage functions f1, f2 and f3
function f0(x)= stage_f(0,x);

function f1(x)= stage_f(1,x);

function f2(x)= stage_f(2,x);

What is the type of f0(x) ?

February 10, 2016 http://csg.csail.mit.edu/6.375 L04-21

Folded Combinational Ckts

rule folded-pipeline (True);
let sxIn = ?;
if (stage==0)
begin sxIn= inQ.first(); inQ.deq(); end

else sxIn= sReg;
let sxOut = f(stage,sxIn);
if (stage==n-1) outQ.enq(sxOut);
else sReg <= sxOut;
stage <= (stage==n-1)? 0 : stage+1;
endrule

x

sReg
inQ

f

outQstage

notice stage
is a dynamic
parameter
now!

no
for-
loop

February 10, 2016 http://csg.csail.mit.edu/6.375 L04-22

12

Shared Circuit

The Twiddle constants can be expressed in a
table or in a case or nested case expression

stage

getTwiddle0

getTwiddle1

getTwiddle2

twid

(shared)

The rest of
stage_f, i.e.
Bfly-4s and

permutations
(shared)

sx

February 10, 2016 http://csg.csail.mit.edu/6.375 L04-23

Superfolded IFFT: Just one
Bfly-4 node!
in0

…

in1

in2

in63

in3

in4

out0

…

out1

out2

out63

out3

out4

Bfly4

Perm
ute

Index == 15?

Index:
0 to 15

64, 2-w
ay

M
uxes

4, 16-w
ay

M
uxes

4, 16-w
ay

D
eM

uxes

Stage
0 to 2

f will be invoked for 48 dynamic values of stage; each
invocation will modify 4 numbers in sReg
after 16 invocations a permutation would be done on
the whole sReg

February 10, 2016 http://csg.csail.mit.edu/6.375 L04-24

13

Superfolded IFFT:
stage function f
function Vector#(64, Complex) stage_f

(Bit#(2) stage, Vector#(64, Complex) stage_in);
Vector#(64, Complex#(n)) stage_temp, stage_out;
for (Integer i = 0; i < 16; i = i + 1)
begin Bit#(2) stage
Integer idx = i * 4;
let twid = getTwiddle(stage, fromInteger(i));
let y = bfly4(twid, stage_in[idx:idx+3]);
stage_temp[idx] = y[0]; stage_temp[idx+1] = y[1];
stage_temp[idx+2] = y[2]; stage_temp[idx+3] = y[3];

end
//Permutation
for (Integer i = 0; i < 64; i = i + 1)

stage_out[i] = stage_temp[permute[i]];
return(stage_out);
endfunction

Bit#(2+4) (stage,i)

should be done only when i=15

February 10, 2016 http://csg.csail.mit.edu/6.375 L04-25

Code for the Superfolded
stage function
Function Vector#(64, Complex) f

(Bit#(6) stagei, Vector#(64, Complex) stage_in);
let i = stagei `mod` 16;
let twid = getTwiddle(stagei `div` 16, i);
let y = bfly4(twid, stage_in[i:i+3]);

let stage_temp = stage_in;
stage_temp[i] = y[0];
stage_temp[i+1] = y[1];
stage_temp[i+2] = y[2];
stage_temp[i+3] = y[3];

let stage_out = stage_temp;
if (i == 15)
for (Integer i = 0; i < 64; i = i + 1)

stage_out[i] = stage_temp[permute[i]];
return(stage_out);

endfunction

One Bfly-4 case

February 10, 2016 http://csg.csail.mit.edu/6.375 L04-26

14

Syntax: Vector of Registers
Register
 suppose x and y are both of type Reg. Then

x <= y means x._write(y._read())

Vector of Int
 x[i] means sel(x,i)
 x[i] = y[j] means x = update(x,i, sel(y,j))

Vector of Registers
 x[i] <= y[j] does not work. The parser thinks it means

(sel(x,i)._read)._write(sel(y,j)._read), which will
not type check

 (x[i]) <= y[j] parses as
sel(x,i)._write(sel(y,j)._read), and works correctly

Don’t ask me why

February 10, 2016 http://csg.csail.mit.edu/6.375 L04-27

802.11a Transmitter
[MEMOCODE 2006] Dave, Gerding, Pellauer, Arvind

Design Lines of Relative
Block Code (BSV) Area
Controller 49 0%
Scrambler 40 0%
Conv. Encoder 113 0%
Interleaver 76 1%
Mapper 112 11%
IFFT 95 85%
Cyc. Extender 23 3%

Complex arithmetic libraries constitute another 200
lines of code

February 10, 2016 http://csg.csail.mit.edu/6.375 L04-28

15

802.11a Transmitter Synthesis
results (Only the IFFT block is changing)

IFFT Design Area
(mm2)

Throughput
Latency

(CLKs/sym)

Min. Freq
Required

Pipelined 5.25 04 1.0 MHz

Combinational 4.91 04 1.0 MHz

Folded
(16 Bfly-4s)

3.97 04 1.0 MHz

Super-Folded
(8 Bfly-4s)

3.69 06 1.5 MHz

SF(4 Bfly-4s) 2.45 12 3.0 MHz

SF(2 Bfly-4s) 1.84 24 6.0 MHz

SF (1 Bfly4) 1.52 48 12 MHZ

TSMC .18 micron; numbers reported are before place and route.

The
same
source
code

All these
designs
were done
in less than
24 hours!

February 10, 2016 http://csg.csail.mit.edu/6.375 L04-29

Why are the areas so similar

Folding should have given a 3x
improvement in IFFT area

February 10, 2016 http://csg.csail.mit.edu/6.375 L04-30

