Folded Combinational
Circuits as an example of

Sequential Circuits

Arvind
Computer Science & Artificial Intelligence Lab
Massachusetts Institute of Technology E

February 10, 2016 http://csg.csail.mit.edu/6.375 L04-1

Folding large
combinational circuits

@ A common way to implement large
combinational circuits is by folding where
registers hold the state from one iteration to
the next
= Implementing imperative loops
= Multiplication
s IFFT

February 10, 2016 http://csg.csail.mit.edu/6.375 LO4-2

Flip flop: The basic building
block of Sequential Circuits

Edge-Triggered Flip-flop

— |

c—p

ff |—Q

c_ I LI LTI 1
o/ w___/
Q__/ —

Metastability

Data is sampled at the rising edge of the clock

February 10, 2016 http://csg.csail.mit.edu/6.375

LO4-3

_Flip-flops with Write Enables

EN
D__.
ff —Q EN ff |—C
D> c —l —p
dangerous!
EN
C [1 L1 | '
EN — /[W
D/ A V] IR D _. Q
ff
Q__ / c———P
Data is captured only if EN is on
February 10, 2016 http://csg.csail.mit.edu/6.375 LO4-4

Registers

N D D D D D D D D
En [T R T R N |

c __’>ff |Lff |Lff | ff |Lff |Lff ff f ff

[

Q Q Q Q Q Q Q Q

Register: A group of flip-flops with a common

clock and enable

Register file: A group of registers with a common
clock, input and output port(s)

February 10, 2016 http://csg.csail.mit.edu/6.375 LO4-5

Expressing a loop using

registers

int s = s0O;
for(inti=0;1<32;i=i+1) {
s = f(s);
b
return s; C-code

notDone

We need two registers
to hold s and i values
from one iteration to
the next.

These registers are
initialized when the
computation starts and
updated every cycle
until the computation
terminates

sel =
en =

February 10, 2016 http://csg.csail.mit.edu/6.375 LO4-6

Expressing sequential
circuits in BSV

Reg#(Bit#(6))

= State elements by instantiating modules
Reg#(Bit#(32)) s <- mkRegU();
i <- mkReg(32);

@ Sequential circuits, unlike combinational
circuits, are not expressed structurally (as
wiring diagrams) in BSV

@ For sequential circuits a designer defines:

make a 32-bit
register which is
uninitialized

= Rules which define how state is to be transformed

atomically

s <= f(s);

i <= i+l;

make a 6-bit
register with
initial value 32

the rule can

endrule

actions to be

execute only when

performed when

its guard is true

the rule executes

February 10, 2016

http://csg.csail.mit.edu/6.375

LO4-7

Rule Execution

® When a rule executes:

= all the registers are read
at the beginning of a
clock cycle

= the guard and
computations to
evaluate the next value
of the registers are
performed

= at the end of the clock
cycle registers are
updated iff the guard is
true

#® Muxes are need to
initialize the registers

February 10, 2016

Reg#(Bit#(32)) s <- mkRegU(Q);
Reg#(Bit#(6)) 1 <- mkReg(32);
rule step if (i < 32);

s <= T(s);

I <= i+l;
endrule

http://csg.csail.mit.edu/6.375

sel = start
en = start | notDone

notDone

LO4-8

Multiplication by repeated
addition

b Multiplicand 1101 (13) al _{ mi ‘aO»{ mo
a Muliplier * 1011 (11) l l l l Oil l l

tp 0000 add4
mo + 1101
a2 IIIH!III
m1 + 1101
tp 100111 add4 |
m2 + 0000 a3 -+

3
w

tp 0100111 l l l l
m3 + 1101 ‘ ‘o ‘
tp 10001111 (143) T
‘mi = (a[i]==0)? 0 : b;l |
February 10, 2016 http://csg.csail.mit.edu/6.375 L04-9

Combinational 32-bit multiply

function Bit#(64) mul32(Bit#(32) a, Bit#(32) b);
Bit#(32) tp = 0;
Bit#(32) prod
for(Integer 1 ; 1.<32; 1 =1+1) compinationa
begin multiply uses 31

I
o o

Bit#(32) m = (ali]==0)? 0 : b; add32 circuits
Bit#(33) sum = add32(m,tp,0); ~
prod[i:i] = sum[0];
tp = sum[32:1];
end
return {tp,prod};
endfunction

We can reuse the same add32 circuit if we store
the partial results in a register

February 10, 2016 http://csg.csail.mit.edu/6.375 L04-10

Design issues with
combinational multiply

@ Lot of hardware
» 32-bit multiply uses 31 add32 circuits

@ Long chains of gates

» 32-bit ripple carry adder has a 31-long
chain of gates

» 32-bit multiply has 31 ripple carry adders in
sequence! Total delay ?

The speed of a combinational circuit is

determined by its longest input-to-output path

Can we do better?

February 10, 2016 http://csg.csail.mit.edu/6.375

LO4-11

Multiply using registers

function Bit#(64) mul32(Bit#(32) a, Bit#(32) b);
Bit#(32) prod 0;
Bit#(32) tp =
for(Integer i
begin
Bit#(32) m = (a[i]==0)? 0 : b;
Bit#(33) sum = add32(m,tp,0);
prod[i:i] = sum[0];
tp = sum[32:1];
end
return {tp,prod};
endfunction

1ol

0; 1 <32; 1 = i+l)

Combinational
version

Need registers to hold a, b, ...?

Update the registers every cycle until we are done

February 10, 2016 http://csg.csail.mit.edu/6.375

L04-12

rul

February 10, 2016

Sequential Circuit for Multiply

Reg#(Bit#(32)) a <- mkRegU(Q);
Reg#(Bit#(32)) b <- mkReguU(Q);
Reg#(Bit#(32)) prod <-mkRegU(Q);
Reg#(Bit#(32)) tp <- mkReg(0);
Reg#(Bit#(6)) 1 <- mkReg(32);

e mullStep if (i < 32);
Bit#(32) m = (a[i]==0)? 0 - b
Bit#(33) sum = add32(m,tp,0);
prod[i] <= sum[O];
tp <= sum[32:1];

state
elements

arule to
describe
the
dynamic
behavior

similar to the
loop body in the
combinational
version

So that the rule has

to some other value

no effect until i is set

http://csg.csail.mit.edu/6.375

L04-13

Dynamic selection
reguires a mux

==

February 10, 2016

L] o, af[0],a[1]

http://csg.csail.mit.edu/6.375

when the selection

indices are regular then
a[i] it is better to use a shift

operator (no gates!)

.a[2],..

L04-14

Replacing repeated
selections by shifts

Reg#(Bit#(32)) a <- mkRegUQ);
Reg#(Bit#(32)) b <- mkRegUQ);
Reg#(Bit#(32)) prod <-mkRegU(Q);
Reg#(Bit#(32)) tp <- mkReg(0);
Reg#(Bit#(6)) i1 <- mkReg(32);

rule mulStep If (I < 32);
Bit#(32) m = (a[0]==0)? O : b;
a<=a> 1;

Bit#(33) sum = add32(m,tp,0);
prod <= {sum[0], prod[31:1]};
tp <= sum[32:1];

i <= i1+1;
endrule
February 10, 2016 http://csg.csail.mit.edu/6.375 L04-15
Circuit for Sequential
Multiply
4 bin
aln
i) b |
©
__/
32:1 007
prod |
done result (high) result (low)
sl = start_en
s2 = start_en | !done
February 10, 2016 http://csg.csail.mit.edu/6.375 L04-16

Circuit analysis

® Number of add32 circuits has been reduced
from 31 to one, though some registers and
muxes have been added

@ The longest combinational path has been
reduced from 62 FAs to to one add32 plus a
few muxes

@ The sequential circuit will take 31 clock cycles

to compute an answer

February 10, 2016 http://csg.csail.mit.edu/6.375 L04-17
ino NG - outO!
inl / Bfly4 Bfly4 Bfly4 —|outl
in2 ‘l’j 5 E \ out2

Bfly4 3 Bfly4 3 Bfly4 3
in3 5 = g =
- x16 & e & out
in4 out4|
Bfly4 Bfly4 Bfly4

£
[0}
W

February 10, 2016

/

Reuse the same circuit three times
to reduce area

http://csg.csail.mit.edu/6.375

g

L04-18

Folded IFFT: Reusing the
Stage computation

in0
O [=~ =

inl — el

—2 2 - ——
in27 : E

® I

in3 ///f Bfly4 \\\\
in4

[] Stage -

Counter

=}
o
@

February 10, 2016 http://csg.csail.mit.edu/6.375

outO

outl

out2

out3

out4

L04-19

BSV Code for stage_f

function Vector#(64, Complex#(n)) stage F

(Bit#(2) stage, Vector#(64, Complex#(n)) stage_in);
Vector#(64, Complex#(n)) stage temp, stage out;

for (Integer 1 = 0; 1 <16; 1 =1 + 1)
begin
Integer idx = i1 * 4;
Vector#(4, Complex#(n)) x;

X[0] = stage_in[idx]; x[1]
x[2] = stage_in[idx+2]; x[3]
let twid = getTwiddle(stage,
let y = bfly4(X):

stage temp[idx] = ; stage temp[idx+1]
stage temp[idx+2] = y[2]; e temp[idx+3]
end

stage_in[idx+1];
= stage_in[idx+3];
frominteger(i));

y[1]:
y[31:

//Permutation

\‘twid’s are

for (Integer 1 = 0; 1 <64; 1 =1 + 1)
stage_out[i] = stage temp[permute[i]];

mathematically

return(stage_out); ((:jc?rzls\galtes
FebruaryelrE)qIOLiQCtl on http://csg.csail.mit.edu/6.375 L04-20

10

Higher-order functions:
Stage functions f1, f2 and f3

function FO(x)= stage_f(0,x);

function F1(x)= stage_f(1,x);

function F2(x)= stage_f(2,x);

What is the type of fO(x) ?

February 10, 2016 http://csg.csail.mit.edu/6.375 L04-21
Folded Combinational Ckts
.
s i
i |
INQ stage outQ
sReg
rule folded-pipeline (True);
let sxIn = ?;
if (stage==0)
begin sxIn= inQ.first(); inQ.deq(); end no
else Sxmi@ notice stage | for-
let sxOut = stage)sxlIn); is a dynamic loop
if (stage==n- outQ.eng(sx0Out); parameter
else sReg <= sxOut; now!
stage <= (stage==n-1)? 0 : stage+1;
endrule
February 10, L04-22

11

Shared Circuit

getTwiddleO

The rest of
stage f, i.e.
Bfly-4s and

permutations

getTwiddlel

getTwiddle2

SX

@ The Twiddle constants can be expressed in a
table or in a case or nested case expression

February 10, 2016 http://csg.csail.mit.edu/6.375

L04-23

Superfolded IFFT: Just one
Bfly-4 node!

in0 M

outO|

nl

outl

aynwiiad

out2

out3

XN\
71\

out4

i o
in2 =R
K c
in3 — & ;J
7]
in4 g —
—
—
N 5
2 oA — mall
= SRS
§] Index: 2o
in63 D < 0t015 c
(2] X = e
D3 L
< n< — 3

Index == 15?

@ f will be invoked for 48 dynamic values of stage; each
invocation will modify 4 numbers in sReg

@ after 16 invocations a permutation would be done on
the whole sReg

February 10, 2016 http://csg.csail.mit.edu/6.375

L04-24

12

Superfolded IFFT:
stage function f

functiogn \e 'omplex) stage_*T

Bit#(2+4) (stage,i

o/

begin Bit#(2) stage
Integer Idx = i * 4;
let twid = getTwiddle(stage, fromlnteger(i));
let y = bfly4(twid, stage_ in[idx:idx+3]);

stage_temp[idx] = y[0]; stage_temp[idx+1] = y[1]:
stage_temp[idx+2] = y[2]; stage_temp[idx+3] = y[3];
end
//P

for (Integer 1 = 0; 1 <64; 1 =1 + 1)
stage out[i] = stage temp[permute[i]];

rn(stage_out);

endfunction

should be done only when i=15

February 10, 2016 http://csg.csail.mit.edu/6.375 L04-25

Code for the Superfolded
stage function

Function Vector#(64, Complex) f
(Bit#(6) stagei, Vector#(64, Complex) stage in);
let i = stagei "mod~ 16;
let twid = getTwiddle(stagei ~div" 16, 1);
let y = bfly4(twid, stage_in[i:i+3]);

let stage _temp = stage in;

stage_temp[i] = y[O]:
stage_temp[i+1] = y[1]; | One Bfly-4 case
stage_temp[i+2] = y[2];
stage_temp[i+3] = y[3];

let stage_out = stage_temp;
if (i == 15)
for (Integer i
stage_out[i]
return(stage_out);
endfunction
February 10, 2016 http://csg.csail.mit.edu/6.375 L04-26

O; 1 <64; i =1 + 1)
stage_temp[permute[i]];

Syntax: Vector of Registers

@ Register
= suppose X and y are both of type Reg. Then
X <=y means X._write(y._read(Q))

@ Vector of Int
s X[1] means sel(x, i)
= X[i] = y[J] means x = update(x,i, sel(y,j))

@ Vector of Registers

= X[1] <= y[]j] does not work. The parser thinks it means
(sel(x,1)._read)._write(sel(y,]j)-_read), which will
not type check

= (X[iD) <= y[J] parses as
sel(x,1)._write(sel(y,]J)-_read), and works correctly

Don’t ask me why

February 10, 2016 http://csg.csail.mit.edu/6.375 L04-27

802.11a Transmitter

[MEMOCODE 2006] Dave, Gerding, Pellauer, Arvind

Design Lines of Relative
Block Code (BSV) Area
Controller 49 0%
Scrambler 40 0%
Conv. Encoder 113 0%
Interleaver 76 1%
Mapper 112 11%
IFFT 95

Cyc. Extender 23

Complex arithmetic libraries constitute another 200
lines of code

February 10, 2016 http://csg.csail.mit.edu/6.375 L04-28

14

802.11a Transmitter Synthesis
results (Only the IFFT block is changing)

The
same
source
code

IFFT Design Area Throughput Min. Freq
(mm2) Latency Required
(CLKs/sym)
Pipelined 5.25 04 1.0 MHz
Combinational 4.91 04 1.0 MHz
Folded 3.97 04 1.0 MHz
~| (16 Bfly-4s)
Super-Folded 3.69 06 1.5 MHz
(8 Bfly-4s)
SF(4 Bfly-4s) 2.45 12 3.0 MHz
SF(2 Bfly-4s) 1.84 24 6.0 MHz
SF (1 Bfly4) 1.52 48 12 MHZ

| TSMC .18 micron; numbers reported are before place and route.

February 10, 2016

http://csg.csail.mit.edu/6.375

All these
designs
were done
in less than
24 hours!

L04-29

Why are the areas so similar

#® Folding should have given a 3x

improvement in IFFT area

February 10, 2016

http://csg.csail.mit.edu/6.375

L04-30

15

