Pipelining combinational
circuits

Arvind
Computer Science & Artificial Intelligence Lab.
Massachusetts Institute of Technology

February 16, 2016 http://csg.csail.mit.edu/6.375

LO5-1

Combinational IFFT

oultO|

outl,

out2,

out3||

71N\

out4

in0 \
R = — [— —
inl — Bfly4 M =3 Bfly4 0 5 Bflya
/ o [o i s
in2 o e HB g
/ Bfly4 3 HB| Bfiv4 3 HBl sfiya 3
in3 = 5 g
x16 i ® e
in4| = =N I
Bfly4 - 5| Bfly4 5 Bl Bfya

@ Lot of area and long combinational delay

Folded or multi-cycle version can save area
and reduce the combinational delay but
throughput per clock cycle gets worse

@ Pipelining: a method to increase the circuit
throughput by evaluating multiple IFFTs

February 16, 2016 http://csg.csail.mit.edu/6.375

’

LO5-2

Inelastic vs Elastic pipeline

J__ -

inQ sRegl sReg2 outQ

Inelastic: all pipeline stages move synchronously

ORI (O8

inQ fifol fifo2 outQ

Elastic: A pipeline stage can process data if its
input FIFO is not empty and output FIFO is not Full

Most complex processor pipelines are a combination of the two styles

February 16, 2016 http://csg.csail.mit.edu/6.375 LO5-3

Inelastic vs Elastic Pipelines

@ Inelastic pipeline:

= typically only one rule; the designer _
controls precisely which activities go on in
parallel

= downside: The rule can get complicated --
easy to make mistakes; difficult to make
changes

@ Elastic pipeline:

= several smaller rules, each easy to write,
easier to make changes

s downside: sometimes rules do not fire
concurrently when they should

February 16, 2016 http://csg.csail.mit.edu/6.375 LO5-4

Inelastic pipeline

J—, -

X
inQ sRegl sReg2 outQ
rule sync-pipeline (True); This rule can fire only if
inQ.deq();

sRegl <= FO(InQ.First());

sReg2 <= T1(sRegl); — -

outQ.enq(f2(sReg2)); Atomicity: Either all or
endrule none of the state
elements inQ, outQ,
sRegl and sReg2 will be
updated

February 16, 2016 http://csg.csail.mit.edu/6.375 LO5-5

Inelastic pipeline

Making implicit guard conditions explicit

7,’ (2

inQ sRegl sReg2 outQ

rulle sync-pipeline (1inQ.empty() && loutQ.full);
inQ.deq();
sRegl <= FO(InQ.first());
sReg2 <= f1l(sRegl);
outQ.enq(f2(sReg2));
endrule

Suppose sRegl and sReg2 have data, outQ is not full
but inQ is empty. What behavior do you expect?

February 16, 2016 http://csg.csail.mit.edu/6.375 LO5-6

Pipeline bubbles

_, : NE TR

Modify the rule to deal with these conditions GRS
the Maybe type

February 16, 2016 http://csg.csail.mit.edu/6.375 LO5-7

X
inQ sRegl sReg2 outQ
rule sync-pipeline (True); Red and Green tokens
inQ.deq(Q); must move even if there
sRegl <= FO(inQ.FirstQ)); is nothing in inQ!
sReg2 <= T1(sRegl); Also if there is no token in
outQ.enq(f2(sReg2)); sReg2 then nothing
endrule should be enqueued in
the outQ

Explicit encoding of
Valid/Invalid data

Jefole

inQ sRegl sReg2 outQ
typedef union tagged {void Valid; void Invalid;
} validbit deriving (Eq, Bits);

rule sync-pipeline (True);

if (inQ.notEmpty())

begin sRegl <= fO(inQ.first()); inQ.deq(Q);

sReglf <= Valid end

else sReglf <= Invalid;

sReg2 <= f1l(sRegl); sReg2f <= sReglf;

iT (sReg2f == Valid) outQ.enq(f2(sReg2));
endrule

February 16, 2016 http://csg.csail.mit.edu/6.375

LO5-8

When is this rule enabled?

rule sync-pipeline (True);
ifT (inQ.notEmpty())
begin sRegl <= FO(inQ.Ffirst());

sReglf <= Valid end

o o
inQ.deqQ; I @ | ’H’@ﬂ

else sReglf <= Invalid; inQ sRegl sReg2 outQ
sReg2 <= T1(sRegl); sReg2f <= sReglf;
iT (sReg2f == Valid) outQ.enq(f2(sReg2));
endrule
inQ sReglf sReg2f outQ inQ sReglf sReg2f outQ
NE \Y \Y NF | | yes E \Y \% NF || Yes
NE \Y \Y F E \Y \Y F
NE \Y 1 NF E \Y% 1 NF
NE \ 1 F E \% 1 F
NE 1 \Y NF E 1 \Y% NF
NE 1 \ F E 1 \Y F
NE 1 1 NF E 1 1 NF
NE 1 1 F E 1 1 F
Yesl = yes

February 16, 2016

http://csg.csail.mit.edu/6.375 but no Change

LO5-9

The Maybe type

A useful type to capture valid/invalid data

void

typedef union tagged {

Invalid;
data T Valid;

} Maybe#(type data_T);

} f data

valid/invalid

Registers contain Maybe

type values

Some useful functions on Maybe type:
isvalid(x) returns true if x is Valid
fromMaybe(d,x) returns

February 16, 2016

the data value in x if x is Valid
the default value d

if x is Invalid

http://csg.csail.mit.edu/6.375

L0O5-10

Using the Maybe type

typedef union tagged { ’ ‘ data
void Invalid;
data_T Valid;

} Maybe#(type data_T);

valid/invalid

Registers contain Maybe
type values

rule sync-pipeline if (True);
if (inQ.notEmpty())
begin sRegl <= Valid fO(inQ.first()); inQ.deq(); end
else sRegl <= Invalid;
sReg2 <= isValid(sRegl)? Valid f1(fromMaybe(d, sRegl)) :

Invalid;
if isvalid(sReg2) outQ.enq(f2(fromMaybe(d, sReg2)));
endrule
February 16, 2016 http://csg.csail.mit.edu/6.375 LO5-11

Pattern-matchin J: An alternative

syntax to extract datastructure components

typedef union tagged {
void Invalid;
data T Valid;

'} Maybe#(type data_T);

case (m) matches

tagged Invali - return 0; X will getbound
= - . to the appropriate

tagged Vvalid return X; part ofm
endcase

if (m matches (Valid -x) &&& (x > 10))

@® The &&& is a conjunction, and allows pattern-variables
to come into scope from left to right

February 16, 2016 http://csg.csail.mit.edu/6.375 LO5-12

The Maybe type data in the
pipeline

typedef union tagged { ’ ‘ data ‘
void Invalid;
data T Valid;

} Maybe#(type data_T);

valid/invalid

Registers contain Maybe
type values

rule sync-pipeline if (True);
if (inQ.notEmpty())
begin sRegl <= Valid (FO(inQ.first())); inQ.deq(); end
else sRegl <= Invalid;

case (sRegl) matches
tagged Valid sReg2 <= Valid f1(sx1);

tagged Invalids SReg2 <= id; endcase
case (sReg2) matches sx1 will

2 get bound
tagged Valid .sx2: outQ.enq(f2(sx2)); g the appropriate

endcase part of sRegl
endrule

February 16, 2016 http://csg.csail.mit.edu/6.375 L05-13

Generalization: n-stage
pipeline

Jelele-je-

inQ sReg[0] sReg[l1] sReg[n-2] outQ

rule sync-pipeline (True);
it (inQ.notEmpty())
begin sReg[0]<= Valid f(1,inQ.First());inQ.deq();end
else sReg[0]<= Invalid;
for(Integer 1 = 1; 1 < n-1; i=i+l) begin
case (sReg[i-1]) matches
tagged Valid .sx: sReg[i] <= Vvalid f(i-1,sx);
tagged Invalid: sReg[i] <= Invalid; endcase end
case (sReg[n-2]) matches
tagged Valid .sx: outQ.enq(f(n-1,sx)); endcase
endrule

February 16, 2016 http://csg.csail.mit.edu/6.375 LO5-14

Elastic pipeline

Use FIFOs instead of pipeline regi

inQ fifol fifo2

rule stagel if (True);
fifol.enq(F1(inQ.First());
inQ.deq(Q); endrule

ORI [O8

sters

outQ

#® What is the firing
condition for each

rule?

rule_stagez i (True); i @ Can tokens be left
fifo2.enq(f2(Ffifol.first()); inside the
fifol.deq(); endrule pipeline?

rule stage3 if (True);
outQ.enq(F3(Fifo2.first());
fifo2.deq(); endrule

February 16, 2016 http://csg.csail.mit.edu/6.375 L05-15
Firing conditions for reach rule

ORI (O8

X

inQ fifol fifo2 outQ
inQ fifol fifo2 outQ rulel rule2 rule3
NE NE,NF NE,NF NF Yes Yes Yes
NE NE,NF NE,NF F Yes Yes No
NE NE,NF NE,F NF
NE NE,NF NE,F F

@ This is the first example we have seen where multiple

rules may be ready to execute concur

@ Can we execute multiple rules together?

February 16, 2016 http://csg.csail.mit.edu/6.375

rently

L0O5-16

Informal analysis

ORI 8

X
inQ fifol fifo2 outQ
inQ Ffifol Tfifo2 outQ rulel rule2 rule3
NE NE,NF NE,NF NF Yes Yes Yes
NE NE,NF NE,NF F Yes Yes No
NE NE,NF NE,F NF Yes No Yes
NE NE,NF NE,F F Yes No No

FIFOs must permit concurrent enq and deq for all three
rules to fire concurrently

February 16, 2016 http://csg.csail.mit.edu/6.375 L05-17

Concurrency when the FIFOs do
not permit concurrent enq and deq

OGN (O

X
inQ fifol fifo2 outQ
not not not not full
empty empty empty
& &
not full not full

February 16, 2016 http://csg.csail.mit.edu/6.375 LO5-18

Pipelined designs expressed
using Multiple rules

@ If rules for different pipeline stages
never fire in the same cycle then the
design can hardly be called a pipelined
design

@ If all the enabled rules fire in parallel
every cycle then, in general, wrong
results can be produced

}We need a clean model for concurrent firing of rules

February 16, 2016 http://csg.csail.mit.edu/6.375 L05-19

BSV Rule Execution

@ A BSV program consists of state elements and
rules, aka, Guarded Atomic Actions (GAA) that
operate on the state elements

@ Application of a rule modifies some state
elements of the system in a deterministic manner

—_ —

r n’
; eg en’s P
X guard | |AND X
next
current m
state
state
next state values
computation| nextState

February 16, 2016 http://csg.csail.mit.edu/6.375 LO5-20

10

BSV Execution Model

Repeatedly: Highly non-
@ Select a rule to execute «—— deterministic
@ Compute the state updates User

annotations
can help in
rule selection

@ Make the state updates

February 16, 2016 http://csg.csail.mit.edu/6.375 L05-21

One-rule-at-time-semantics

The legal behavior of a BSV program can
always be explained by observing the state
updates obtained by applying only one rule at
a time

Implementation concern: Schedule
multiple rules concurrently without
violating one-rule-at-a-time semantics

February 16, 2016 http://csg.csail.mit.edu/6.375 LO5-22

11

Role of guards in rule
scheduling

@ For concurrent scheduling of rules, we need to
consider only those rules which can be
concurrently enabled, i.e., whose guards can
be true simultaneously

@ In order to understand when a rule can be

enabled, we need to understand precisely how
implicit guards are lifted to form the rule guard

==> Guard lifting procedure

February 16, 2016 http://csg.csail.mit.edu/6.375

L05-23

Making guards explicit

rule foo if (True);
if (p) fifo.enq(8);
r <=7;

endrule

rule foo if (p
if (p) fifo.enq(B);
r <= 7;

endrule

Effectively, all implicit conditions (guards) are lifted
and conjoined to the rule guard

February 16, 2016 http://csg.csail.mit.edu/6.375

L05-24

12

Implicit guards (conditions)

rule <name> i1If (<guard>); <action>; endrule

<action> ::= r <= <exp>
| if (<exp>) <action>
make implicit | <action> ; <action>

guards explicit |-m-g(<exp>)— |m.gs(<exp>) when m.gc

C | t = <exp>

<action> -:= r <= <exp>
| if (<exp>) <action>
| <action> when (<exp>)
| <action> ; <action>
| m.gg(<exp>)
| t = <exp>

February 16, 2016 http://csg.csail.mit.edu/6.375 LO5-25

Guards vs If’'s

@ A guard on one action of a parallel group of
actions affects every action within the group
(al when p1); a2

==> (al; a2) when p1

@ A condition of a Conditional action only affects
the actions within the scope of the conditional
action
(if (p1) al); a2

pl has no effect on a2 ...

@ Mixing ifs and whens

(if (p) (a1 when q)) ; a2
= ((if (p) a1); a2) when ((p && q) | !'p)
= ((if (p) al); a2) when (q | !'p)

February 16, 2016 http://csg.csail.mit.edu/6.375 LO5-26

13

Guard Lifting rules

@ All the guards can be “lifted” to the top of a rule
» (al when p) ; a2 =
s al ; (a2 when p) =
s if (p when q) a =
s if (p) (awhen Q) =

(a when pl) when p2 =

r X <= (e when p) =
similarly for expressions ...
= Rule r (a when p) =

February 16, 2016 http://csg.csail.mit.edu/6.375

L05-27

BSV provides a primitive (impCondOf)
to make guards explicit and lift them
to the top

From now on in concurrency
discussions we will assume that all
guards have been lifted to the top in
every rule

February 16, 2016 http://csg.csail.mit.edu/6.375

L05-28

14

