
1

Concurrency properties of
BSV methods and rules

Arvind
Computer Science & Artificial Intelligence Lab.
Massachusetts Institute of Technology

February 22, 2016 http://csg.csail.mit.edu/6.375 L07-1

One-rule-at-a-time semantics
Given a program with a set of rules {rule ri ai}
and an initial state S0 , S is a legal state if and
only if there exists a sequence of rules rj1,….,
rjn such that S= ajn(…(aj1(S0))…)

February 22, 2016 http://csg.csail.mit.edu/6.375 L07-2

2

Concurrent execution of
two rules

Concurrent execution of two rules, rule r1 a1
and rule r2 a2, means executing a rule whose
body looks like (a1; a2), that is a rule which is
a parallel composition of the actions of the two
rules with the following restrictions to preserve
the one-rule-at-a-time semantics:
 Either S. (a1; a2)(S) = a2(a1(S))

or S. (a1; a2)(S) = a1(a2(S))

February 22, 2016 http://csg.csail.mit.edu/6.375 L07-3

Concurrent scheduling of
rules

rule r1 a1 to rule rn an can be scheduled
concurrently, preserving one-rule-at-a-time
semantics, if and only if there exists a
permutation (p1,…,pn) of (1,…,n) such that
 S. (a1;…;an)(S) = apn(…(ap1(S))

February 22, 2016 http://csg.csail.mit.edu/6.375 L07-4

How does a compiler decide which rules
can be scheduled concurrently

Related question: what is a legal rule?

3

Well formed actions (rules)
informally

No possibility of double write error. In general,
no double use of a method
 The only exception is a value method without

arguments, e.g., register read, fifo.first
No combinational cycles. In general it means
that it should be possible to put all the method
calls in a sequential order consistent with
their module definitions and data dependences

February 22, 2016 http://csg.csail.mit.edu/6.375 L07-5

Are these actions legal?
x <= e1; x <= e2;
x <= e1; if(p) x <= e2;
if(p) x <= e1; else x <= e2;
x[0] <= x[1]

x[0] <= y[1]; y[0] <= x[1]
if (x[1]) x[0] <= e;

February 22, 2016 http://csg.csail.mit.edu/6.375 L07-6

4

A critical example
Example 1: Rule exchange x <= y; y <= x
Example 2: Rule exchange’ f() ; g()

where Module foo
register x, y etc
method f() = (x <= y);
method g() = (y <= x);

Example 3:
Rule fr; x <= y;
Rule gr; y <= x;

February 22, 2016 L07-7http://csg.csail.mit.edu/6.375

Is exchange legal?

Can rules fr and gr be executed together?
Is exchange’ legal?

Primitive module: Register
reg.r reg.w

reg.r CF CF

reg.w CF C

February 22, 2016 http://csg.csail.mit.edu/6.375 L07-8

read and write can happen
in the same atomic action
and don’t affect each
other; the effect of write is
not visible until the atomic
action has completed
Legality of an action
depends upon the
permitted intra-rule
behaviors
Concurrent scheduling
depends upon the inter-
rule behavior

reg.r reg.w

reg.r CF <

reg.w > C

Intra-rule behavior

Inter-rule behavior

5

Primitive module: EHR

EHR.r0 EHR.w0 EHR.r1 EHR.w1

EHR.r0 CF

EHR.w0 C

EHR.r1 CF

EHR.w1 C

Intra-rule
behavior

February 22, 2016 http://csg.csail.mit.edu/6.375 L07-9

EHR.r0 EHR.w0 EHR.r1 EHR.w1

EHR.r0 CF

EHR.w0 C

EHR.r1 CF

EHR.w1 C

Inter-rule
behavior

Intra-rule analysis

“Happens before” (<) relation
“happens before” relation between the methods
of a module governs how the methods behave
when called by a rule, action, method or exp
 f < g : f happens before g

(g cannot affect f within an action)
 f > g : g happens before f
 C : f and g conflict and cannot be called together
 CF : f and g are conflict free and do not affect each

other
This relation is defined as a conflict matrix (CM)
for the methods of primitive modules like
registers and EHRs and derived for the methods
of all other modules

February 22, 2016 http://csg.csail.mit.edu/6.375 L07-10

6

Inter-rule analysis

“Happens before” (<) relation
“happens before” relation between the methods
of a module governs how the methods behave
when called by two rules or methods
 f < g : parallel: but g may affect f in a seq execution
 f > g : parallel: but f may affect g in a seq execution
 C : not parallel: f and g conflict
 CF : parallel: f and g are conflict free and

unrelated
This relation is defined as a conflict matrix (CM)
for the methods of primitive modules like
registers and EHRs and derived for the methods
of all other modules

February 22, 2016 http://csg.csail.mit.edu/6.375 L07-11

Conflict ordering

This permits us to take intersections of conflict
information, e.g.,
 {>}{<,>} = {>}
 {>}{<} = {}

CF = {<,>}

{<} {>}

C = {}

February 22, 2016 http://csg.csail.mit.edu/6.375 L07-12

7

Some definitions
mcalls(x) is the set of method called by x

mcalls(x) <s mcalls(y) means
a  mcalls(x), b  mcalls(y) =>

(a < b) | (a CF b) | (a ME b)

we often overload < and use it in place of <s

February 22, 2016 http://csg.csail.mit.edu/6.375 L07-13

To be explained later

Deriving the Conflict
Matrix (CM) of a module

Let g1 and g2 be the two methods defined by a
module, such that

mcalls(g1)={g11,g12...g1n}
mcalls(g2)={g21,g22...g2m}

conflict(x,y) = if x and y are methods of the
same module then CM[x,y] else CF
Derivation
 CM[g1,g2] = conflict(g11,g21)  conflict(g11,g22) ...

 conflict(g12,g21)  conflict(g12,g22) ...
…
 conflict(g1n,g21)  conflict(g12,g22) ...

Compiler can derive the CM for a module by starting with
the innermost modules in the module instantiation tree

February 22, 2016 http://csg.csail.mit.edu/6.375 L07-14

8

Data-dependence constraints
if (e) a  NewDependences(mcalls(e), mcalls(a))

m.g(e)  NewDependences(mcalls(e), {m.g})

t = e ; a  NewDependences(mcalls(e) ,
{f | f  mcalls(a) & f uses t})

February 22, 2016 http://csg.csail.mit.edu/6.375 L07-15

An action is legal if the data-dependence imposed
constraints together with method definition constraints
can be placed in a total order (no cycles)

Real legal-rule analysis is more
complicated: Predicated calls

The analysis we presented would reject the
following rule because of method conflicts

if (p) m.g(e1) ; if (!p) m.g(e2)
We need to keep track of the predicates
associated with each method call

m.g is called with predicates p and !p
which are disjoint – therefore no conflict

February 22, 2016 http://csg.csail.mit.edu/6.375 L07-16

9

Mutually exclusive actions
a1 and a2 are mutually exclusive if in all possible
states the effect of one of them is “no action”
 example: a1 = if (p) b1 a2 = if (!p) b2

Mutual exclusivity of actions and methods
reduces the number of conflicts at the cost of
complicating the analysis
In computing the conflict matrix (CM) one can
ignore entries corresponding to mutually
exclusive methods
In determining the legality of an action (rule) one
can ignore the ordering constraints between
mutually exclusive sub-actions

February 22, 2016 L07-17http://csg.csail.mit.edu/6.375

Some examples to intra-
rule and inter-rule analysis

February 22, 2016 L07-18http://csg.csail.mit.edu/6.375

10

CM for One-Element FIFO
module mkPipelineFifo(Fifo#(1, t)) provisos(Bits#(t, tSz));

Reg#(t) d <- mkRegU;
Reg#(Bool) v <- mkReg(False);

method Action enq(t x) if (!v);
d <= x;
v <= True;

endmethod

method Action deq if (v);
v <= False;

endmethod

method t first if (v);
return d;

endmethod
endmodule

mcalls(enq) =

mcalls(deq) =

mcalls(first) =

February 22, 2016 http://csg.csail.mit.edu/6.375 L07-19

Notice enq and deq are mutually exclusive

CM for One-Element FIFO
mcalls(enq) = {v.r, d.w, v.w}
mcalls(deq) = {v.r, v.w}
mcalls(first) = {v.r, d.r}

Intra-rule CM

enq deq first

enq C ME ME

deq ME C CF

first ME CF CF

February 22, 2016 http://csg.csail.mit.edu/6.375 L07-20

enq deq first

enq C ME ME

deq ME C >

first ME < CF

Inter-rule CM

11

CM for One-Element Pipeline
FIFO
module mkPipelineFifo(Fifo#(1, t)) provisos(Bits#(t, tSz));

Reg#(t) d <- mkRegU;
Ehr#(2, Bool) v <- mkEhr(False);

method Action enq(t x) if (!v[1]);
d <= x;
v[1] <= True;

endmethod

method Action deq if (v[0]);
v[0] <= False;

endmethod

method t first if (v[0]);
return d;

endmethod
endmodule

mcalls(enq) =

mcalls(deq) =

mcalls(first) =

February 22, 2016 http://csg.csail.mit.edu/6.375 L07-21

CM for One-Element Pipeline
FIFO
mcalls(enq) = {v.r1, d.w, v.w1}
mcalls(deq) = {v.r0, v.w0}
mcalls(first) = {v.r0, d.r}

CM[enq,deq] = conflict[v.r1,v.r0]  conflict[v.r1,v.w0]
 conflict[d.w,v.r0]  conflict[d.w,v.w0]
 conflict[v.w1,v.r0]  conflict[v.w1,v.w0]

enq deq first

enq C

deq C

first CF

February 22, 2016 http://csg.csail.mit.edu/6.375 L07-22

enq deq first

enq C

deq C

first CF

Intra-rule Inter-rule

Intra-rule
derivation

12

CM for One-Element Bypass
FIFO
module mkBypassFifo(Fifo#(1, t)) provisos(Bits#(t, tSz));
Ehr#(2, t) d <- mkEhr(?);
Ehr#(2, Bool) v <- mkEhr(False);

method Action enq(t x) if !v[0];
d[0] <= x;
v[0] <= True;

endmethod

method Action deq if v[1];
v[1] <= False;

endmethod
`

method t first if v[1];
return d[1];

endmethod
endmodule

mcalls(enq) =

mcalls(deq) =

mcalls(first) =

February 22, 2016 http://csg.csail.mit.edu/6.375 L07-23

CM for One-Element Bypass
FIFO
mcalls(enq) = {d.w0, v.w0, v.r0}
mcalls(deq) = {v.r1, v.w1}
mcalls(first) = {v.r1, d.r1}

CM[enq,deq] =

Enq Deq First

Enq C

Deq C

First CF

February 22, 2016 http://csg.csail.mit.edu/6.375 L07-24

Enq Deq First

Enq C

Deq C

First CF

Intra-rule Inter-rule

Intra-rule
derivation

13

module mkCFFifo(Fifo#(2, t)) provisos(Bits#(t, tSz));
Ehr#(2, t) da <- mkEhr(?);
Ehr#(2, Bool) va <- mkEhr(False);
Ehr#(2, t) db <- mkEhr(?);
Ehr#(2, Bool) vb <- mkEhr(False);

rule canonicalize(vb[1] && !va[1]);
da[1] <= db[1];
va[1] <= True; vb[1] <= False; endrule

method Action enq(t x) if va[0];
db[0] <= x; vb[0] <= True; endmethod

method Action deq if !vb[0];
va[0] <= False endmethod

method t first if !vb[0];
return da[0]; endmethod

endmodule

CM for Two-Element Conflict-
free FIFO

db da

Derive the CM

February 22, 2016 http://csg.csail.mit.edu/6.375 L07-25

Extending CM to rules
using inter-rule CMs

CM between two rules is computed exactly the
same way as CM for the methods of a module

Given rule r1 a1 and rule r2 a2 such that
mcalls(a1)={g11,g12...g1n}
mcalls(a2)={g21,g22...g2m}

Compute
 Conflict(x,y) = if x and y are methods of the same

module then CM[x,y] else CF
 CM[r1,r2] = conflict(g11,g21)  conflict(g11,g22) ...

 conflict(g12,g21)  conflict(g12,g22) ...
…
 conflict(g1n,g21)  conflict(g12,g22) ...

Conflict relation is not transitive
 r1 < r2, r2 < r3 does not imply r1 < r3

February 22, 2016 http://csg.csail.mit.edu/6.375 L07-26

14

Using CMs for concurrent
scheduling of rules
Two rules that are conflict free can be scheduled
together without violating the one-rule-at-a-time
semantics. In general, use the following theorem

Theorem: Given a set of rules {rule ri ai}, if
there exists a permutation {p1, p2 … pn} of
{1..n} such that

 i < j. CM(api, apj) is CF or < or ME
then the rules r1, r2 … rn can be scheduled
concurrently with the effect  i, j. rpi < rpj

February 22, 2016 http://csg.csail.mit.edu/6.375 L07-27

A compiler can perform the analysis needed for
concurrent scheduling of rules James Hoe, 2000

Scheduling constraints due
to multiple modules

rule ra;

aTob.enq(fa(x));

x <= ga(bToa.first);

bToa.deq;

endrule

rule rb;

y <= gb(aTob.first);

aTob.deq;

bToa.enq(fb(y));

Endrule

// assume both fifos are
not empty

aTob bToa Concurrent
fifo fifo scheduling?
CF CF
CF pipeline
CF bypass
pipeline CF
pipeline pipeline
pipeline bypass
bypass CF
bypass pipeline
bypass bypass

Can ra and rb
be scheduled
concurrently?

ra rb

aTob

bToa

x y

fifos are initially empty

February 17, 2016 http://csg.csail.mit.edu/6.375 L06-28

