
1

Pipelined Processors

Arvind
Computer Science & Artificial Intelligence Lab.
Massachusetts Institute of Technology

March 2, 2016 http://csg.csail.mit.edu/6.375 L10-1

Two-Cycle RISC-V

PC

Inst

Memory

Decode

Register File

Execute

Data

Memory

+4
f2d

state

Introduce register “f2d” to hold a fetched
instruction and register “state” to remember the
state (fetch/execute) of the processor

March 2, 2016 http://csg.csail.mit.edu/6.375 L10-2

2

Two-Cycle RISC-V
module mkProc(Proc);

 Reg#(Addr) pc <- mkRegU;

 RFile rf <- mkRFile;

 IMemory iMem <- mkIMemory;

 DMemory dMem <- mkDMemory;

 Reg#(Data) f2d <- mkRegU;

 Reg#(State) state <- mkReg(Fetch);

 rule doFetch (state == Fetch);

 let inst = iMem.req(pc);

 f2d <= inst;

 state <= Execute;

 endrule

March 2, 2016 http://csg.csail.mit.edu/6.375 L10-3

Two-Cycle RISC V

The Execute Cycle
rule doExecute(stage==Execute);

 let inst = f2d;

 let dInst = decode(inst);

 let rVal1 = rf.rd1(fromMaybe(?, dInst.src1));

 let rVal2 = rf.rd2(fromMaybe(?, dInst.src2));

 let eInst = exec(dInst, rVal1, rVal2, pc);

 if(eInst.iType == Ld)

 eInst.data <- dMem.req(MemReq{op: Ld, addr:

 eInst.addr, data: ?});

 else if(eInst.iType == St)

 let d <- dMem.req(MemReq{op: St, addr:

 eInst.addr, data: eInst.data});

 if (isValid(eInst.dst))

 rf.wr(fromMaybe(?, eInst.dst), eInst.data);

 pc <= eInst.brTaken ? eInst.addr : pc + 4;

 state <= Fetch;

endrule endmodule
no change from single-cycle

March 2, 2016 http://csg.csail.mit.edu/6.375 L10-4

3

Two-Cycle RISC-V: Analysis

PC

Inst

Memory

Decode

Register File

Execute

Data

Memory

+4
fr

stage

In any given clock
cycle, lot of unused

hardware !

Execute Fetch

Pipeline execution of instructions to increase
the throughput

March 2, 2016 http://csg.csail.mit.edu/6.375 L10-5

Problems in Instruction
pipelining

Control hazard: Insti+1 is not known until Insti is at least
decoded. So which instruction should be fetched?

Structural hazard: Two instructions in the pipeline may
require the same resource at the same time, e.g.,
contention for memory

Data hazard: Insti may affect the state of the machine (pc,
rf, dMem) – Insti+1must be fully cognizant of this change

PC Decode

Register File

Execute

Data

Memory

Inst

Memory

+4
f2d

Insti Insti+1

 none of these hazards were present in the FFT pipeline
March 2, 2016 http://csg.csail.mit.edu/6.375 L10-6

4

Arithmetic versus
Instruction pipelining

Data items in an arithmetic pipeline are
independent of each other

An instruction in the pipeline affects future
instruction

 This causes pipeline stalls or requires other fancy
tricks to avoid stalls

 Processor pipelines are significantly more
complicated than arithmetic pipelines

sReg1 sReg2

x

inQ

f0 f1 f2

outQ

March 2, 2016 http://csg.csail.mit.edu/6.375 L10-7

The power of computers comes
from the fact that the
instructions in a program are
not independent of each other

 must deal with hazard

March 2, 2016 http://csg.csail.mit.edu/6.375 L10-8

5

Control Hazards

General solution – speculate, i.e., predict the next
instruction address
 requires the next-instruction-address prediction machinery;

can be as simple as pc+4
 prediction machinery is usually elaborate because it

dynamically learns from the past behavior of the program

When speculation goes wrong, machinery is needed to kill
the wrong-path instructions, restore the correct processor
state and restart the execution at the correct pc

PC Decode

Register File

Execute

Data

Memory

Inst

Memory

+4
f2d

Insti Insti+1 Insti+1 is not known
until Insti is at least
decoded. So which
instruction should be
fetched?

March 2, 2016 http://csg.csail.mit.edu/6.375 L10-9

Two-stage Pipelined RISC-V

PC Decode

Register File

Execute

Data
Memory

Inst
Memory

nap
f2d

Fetch stage Decode-RegisterFetch-Execute-Memory-
WriteBack stage

kill misprediction

correct pc

f2d must contain a Maybe type value because
sometimes the fetched instruction is killed

Fetch2Decode type captures all the information that
needs to be passed from Fetch to Decode, i.e.

 Fetch2Decode {pc:Addr, ppc: Addr, inst:Inst}

prediction correction

March 2, 2016 http://csg.csail.mit.edu/6.375 L10-10

6

Pipelining Two-Cycle RISC-V
single rule
rule doPipeline ;

 let instF = iMem.req(pc);

 let ppcF = nap(pc); let nextPc = ppcF;

 let newf2d = Valid (Fetch2Decode{pc:pc,ppc:ppcF,

 inst:instF});

 if(isValid(f2d)) begin

 let x = fromMaybe(?,f2d); let pcD = x.pc;

 let ppcD = x.ppc; let instD = x.inst;

 let dInst = decode(instD);

 ... register fetch ...;

 let eInst = exec(dInst, rVal1, rVal2, pcD, ppcD);

 ...memory operation ...

 ...rf update ...

 if (eInst.mispredict) begin nextPc = eInst.addr;

 newf2d = Invalid; end

 end

 pc <= nextPc; f2d <= newf2d;

endrule

fetch

execute

these values are
being redefined

March 2, 2016 http://csg.csail.mit.edu/6.375 L10-11

Inelastic versus Elastic
pipeline

The pipeline presented is inelastic, that is, it
relies on executing Fetch and Execute together
or atomically

In a realistic machine, Fetch and Execute
behave more asynchronously; for example
memory latency or a functional unit may take
variable number of cycles

If we replace ir by a FIFO (f2d) then it is
possible to make the machine more elastic,
that is, Fetch keeps putting instructions into
f2d and Execute keeps removing and
executing instructions from f2d

March 2, 2016 http://csg.csail.mit.edu/6.375 L10-12

7

An elastic Two-Stage pipeline
rule doFetch ;

 let inst = iMem.req(pc);

 let ppc = nap(pc); pc <= ppc;

 f2d.enq(Fetch2Decode{pc:pc, ppc:ppc, inst:inst});

endrule

rule doExecute ;

 let x = f2d.first; let inpc = x.pc;

 let ppc = x.ppc; let inst = x.inst;

 let dInst = decode(inst);

 ... register fetch ...;

 let eInst = exec(dInst, rVal1, rVal2, inpc, ppc);

 ...memory operation ...

 ...rf update ...

 if (eInst.mispredict) begin

 pc <= eInst.addr; f2d.clear; end

 else f2d.deq;

endrule

Can these rules
execute concurrently
assuming the FIFO
allows concurrent enq,
deq and clear?

No –
double writes in pc

March 2, 2016 http://csg.csail.mit.edu/6.375 L10-13

An elastic Two-Stage pipeline:
for concurrency make pc into an EHR

rule doFetch ;

 let inst = iMem.req(pc[0]);

 let ppc = nap(pc[0]); pc[0] <= ppc;

 f2d.enq(Fetch2Decode{pc:pc[0], ppc:ppc, inst:inst});

endrule

rule doExecute;

 let x = f2d.first; let inpc = x.pc;

 let ppc = x.ppc; let inst = x.inst;

 let dInst = decode(inst);

 ... register fetch ...;

 let eInst = exec(dInst, rVal1, rVal2, inpc, ppc);

 ...memory operation ...

 ...rf update ...

 if (eInst.mispredict) begin

 pc[1] <= eInst.addr; f2d.clear; end

 else f2d.deq;

endrule

These rules can
execute concurrently
assuming the FIFO has
(enq CF deq) and
(enq < clear)

Can you design
such a FIFO?

March 2, 2016 http://csg.csail.mit.edu/6.375 L10-14

8

Correctness issue

<inst, pc, ppc>

Once Execute redirects the PC,
 no wrong path instruction should be executed
 the next instruction executed must be the redirected

one

This is true for the code shown because
 Execute changes the pc and clears the FIFO

atomically (assume the effect of clear is after enq)
 Fetch reads the pc and enqueues the FIFO atomically

Fetch Execute

PC

March 2, 2016 http://csg.csail.mit.edu/6.375 L10-15

Killing fetched instructions
In the simple design with combinational memory
we have discussed so far, all the mispredicted
instructions were present in f2d. So the Execute
stage can atomically:

 Clear f2d

 Set pc to the correct target

In highly pipelined machines there can be
multiple mispredicted and partially executed
instructions in the pipeline; it will generally take
more than one cycle to kill all such instructions

Need a more general solution then clearing the f2d FIFO

March 2, 2016 http://csg.csail.mit.edu/6.375 L10-16

9

Epoch: a method for
managing control hazards

Add an epoch register in the processor state

The Execute stage changes the epoch
whenever the pc prediction is wrong and sets
the pc to the correct value

The Fetch stage associates the current epoch
with every instruction when it is fetched

PC

iMem

nap
f2d

Epoch

Fetch Execute

inst

targetPC

The epoch of the
instruction is examined
when it is ready to
execute. If the processor
epoch has changed the
instruction is thrown away

March 2, 2016 http://csg.csail.mit.edu/6.375 L10-17

An epoch based solution
rule doFetch ;

 let instF=iMem.req(pc[0]);

 let ppcF=nap(pc[0]); pc[0]<=ppcF;

 f2d.enq(Fetch2Decode{pc:pc[0],ppc:ppcF,epoch:epoch,

 inst:instF});

endrule

rule doExecute;

 let x=f2d.first; let pcD=x.pc; let inEp=x.epoch;

 let ppcD = x.ppc; let instD = x.inst;

 if(inEp == epoch) begin

 let dInst = decode(instD); ... register fetch ...;

 let eInst = exec(dInst, rVal1, rVal2, pcD, ppcD);

 ...memory operation ...

 ...rf update ...

 if (eInst.mispredict) begin

 pc[1] <= eInst.addr; epoch <= next(epoch); end

 end

 f2d.deq; endrule

Can these rules execute concurrently ?

yes

Two values for epoch are sufficient !

March 2, 2016 http://csg.csail.mit.edu/6.375 L10-18

10

Discussion
Epoch based solution kills one wrong-path
instruction at a time in the execute stage

It may be slow, but it is more robust in more
complex pipelines, if you have multiple stages
between fetch and execute or if you have
outstanding instruction requests to the iMem

It requires the Execute stage to set the pc and
epoch registers simultaneously which may result
in a long combinational path from Execute to
Fetch

March 2, 2016 http://csg.csail.mit.edu/6.375 L10-19

Data Hazards

March 2, 2016 http://csg.csail.mit.edu/6.375 L10-20

11

Consider a different two-
stage pipeline

PC Decode

Register File

Execute

Data

Memory

Inst

Memory

nap

f2d

Suppose we move the pipeline stage from Fetch to after Decode
and Register fetch for a better balance of work in two stages

Fetch
Execute, Memory, WriteBack

Insti Insti+1

Pipeline will still have control hazards

Decode,
RegisterFetch

March 2, 2016 http://csg.csail.mit.edu/6.375 L10-21

 epoch

A different 2-Stage pipeline:
2-Stage-DH pipeline

Use the same epoch solution for
control hazards as before

Fetch, Decode, RegisterFetch Execute, Memory, WriteBack

March 2, 2016 http://csg.csail.mit.edu/6.375 L10-22

PC

Inst

Memory

Decode

Register File

Execute

Data

Memory

d2e

 epoch

nap

fifo

12

Converting the old pipeline
into the new one
rule doFetch;

... let instF = iMem.req(pc);

 f2d.enq(Fetch2Execute{... inst: instF ...}); ...

endrule

rule doExecute;

... let dInst = decode(instD);

 let rVal1 = rf.rd1(fromMaybe(?, dInst.src1));

 let rVal2 = rf.rd2(fromMaybe(?, dInst.src2));

 let eInst = exec(dInst, rVal1, rVal2, pcD, ppcD);

...

endrule

instF

Not quite correct. Why?

Fetch is potentially reading stale values from rf

March 2, 2016 http://csg.csail.mit.edu/6.375 L10-23

Data Hazards
fetch &
decode

execute

d2e

time t0 t1 t2 t3 t4 t5 t6 t7
FDstage FD1 FD2 FD3 FD4 FD5
EXstage EX1 EX2 EX3 EX4 EX5

 I1 R1 R2+R3

 I2 R4 R1+R2

 I2 must be stalled until I1 updates the register file

pc rf dMem

time t0 t1 t2 t3 t4 t5 t6 t7
FDstage FD1 FD2 FD2 FD3 FD4 FD5
EXstage EX1 EX2 EX3 EX4 EX5

March 2, 2016 http://csg.csail.mit.edu/6.375 L10-24

13

Dealing with data hazards
Keep track of instructions in the pipeline and
determine if the register values to be fetched
are stale, i.e., will be modified by some older
instruction still in the pipeline. This condition
is referred to as a read-after-write (RAW)
hazard

Stall the Fetch from dispatching the instruction
as long as RAW hazard prevails

RAW hazard will disappear as the pipeline
drains

 Scoreboard: A data structure to keep
track of the instructions in the pipeline
beyond the Fetch stage

March 2, 2016 http://csg.csail.mit.edu/6.375 L10-25

Data Hazard
Data hazard depends upon the match between
the source registers of the fetched instruction
and the destination register of an instruction
already in the pipeline

Both the source and destination registers must
be Valid for a hazard to exist

function Bool isFound

 (Maybe#(RIndex) x, Maybe#(RIndex) y);

 if(x matches Valid .xv &&& y matches Valid .yv

 &&& yv == xv)

 return True;

 else return False;

endfunction

March 2, 2016 http://csg.csail.mit.edu/6.375 L10-26

14

Scoreboard: Keeping track of
instructions in execution

Scoreboard: a data structure to keep track of
the destination registers of the instructions
beyond the fetch stage

 method insert: inserts the destination (if any) of an
instruction in the scoreboard when the instruction is
decoded

 method search1(src): searches the scoreboard for a
data hazard

 method search2(src): same as search1

 method remove: deletes the oldest entry when an
instruction commits

March 2, 2016 http://csg.csail.mit.edu/6.375 L10-27

2-Stage-DH pipeline:
Scoreboard and Stall logic

PC

Inst

Memory

Decode

Register File

Execute

Data

Memory

d2e

nap

scoreboard

March 2, 2016 http://csg.csail.mit.edu/6.375 L10-28

 eEpoch

15

2-Stage-DH pipeline
doFetch rule
rule doFetch;

 let instF = iMem.req(pc[0]);

 let ppcF = nap(pc[0]); pc[0] <= ppcF;

 let dInst = decode(instF);

 let stall = sb.search1(dInst.src1)|| sb.search2(dInst.src2);

 if(!stall) begin

 let rVal1 = rf.rd1(fromMaybe(?, dInst.src1));

 let rVal2 = rf.rd2(fromMaybe(?, dInst.src2));

 d2e.enq(Decode2Execute{pc: pc[0], ppc: ppcF,

 dInst: dInst, epoch: epoch,

 rVal1: rVal1, rVal2: rVal2});

 sb.insert(dInst.rDst); end

endrule

What should happen to
pc when Fetch stalls?

pc should change only
when the instruction
is enqueued in d2e

March 2, 2016 http://csg.csail.mit.edu/6.375 L10-29

To avoid structural hazards, scoreboard
must allow two search ports

2-Stage-DH pipeline
doFetch rule
rule doFetch;

 let instF = iMem.req(pc[0]);

 let ppcF = nap(pc[0]); pc[0] <= ppcF;

 let dInst = decode(instF);

 let stall = sb.search1(dInst.src1)|| sb.search2(dInst.src2);

 if(!stall) begin

 let rVal1 = rf.rd1(fromMaybe(?, dInst.src1));

 let rVal2 = rf.rd2(fromMaybe(?, dInst.src2));

 d2e.enq(Decode2Execute{pc: pc[0], ppc: ppcF,

 dInst: dInst, epoch: epoch,

 rVal1: rVal1, rVal2: rVal2});

 sb.insert(dInst.rDst); end

endrule

March 2, 2016 http://csg.csail.mit.edu/6.375 L10-30

pc[0] <= ppcF; end

16

2-Stage-DH pipeline
doExecute rule
rule doExecute;

 let x = d2e.first;

 let dInstE = x.dInst; let pcE = x.pc;

 let ppcE = x.ppc; let inEpoch = x.epoch;

 let rVal1E = x.rVal1; let rVal2E = x.rVal2;

 if(inEpoch == epoch) begin

 let eInst = exec(dInstE, rVal1E, rVal2E, pcE, ppcE);

 if(eInst.iType == Ld) eInst.data <-

 dMem.req(MemReq{op:Ld, addr:eInst.addr, data:?});

 else if (eInst.iType == St) let d <-

 dMem.req(MemReq{op:St, addr:eInst.addr, data:eInst.data});

 if (isValid(eInst.dst))

 rf.wr(fromMaybe(?, eInst.dst), eInst.data);

 if(eInst.mispredict) begin

 pc[1] <= eInst.addr; epoch <= !epoch; end

 end

 d2e.deq; sb.remove;

endrule

March 2, 2016 http://csg.csail.mit.edu/6.375 L10-31

Summary
Instruction pipelining requires dealing with
control and data hazards

Speculation is necessary to deal with control
hazards

Data hazards are avoided by withholding
instructions in the decode stage until the hazard
disappears

Performance issues are subtle

 Data values can be bypassed from later stages to
register fetch stage to reduce stalls

 Bypassing can introduce longer combinational paths
which can slow down the clock

March 2, 2016 http://csg.csail.mit.edu/6.375 L10-32

Some extra slides follow

17

WAW hazards
If multiple instructions in the scoreboard can
update the register which the current
instruction wants to read, then the current
instruction has to read the update for the
youngest of those instructions

This is not a problem in our design because

 instructions are committed in order

 the RAW hazard for the instruction at the decode
stage will remain as long as the any instruction with
the required destination is present in sb

March 2, 2016 http://csg.csail.mit.edu/6.375 L10-33

An alternative design for sb

Instead of keeping track of the destination of
every instruction in the pipeline, we can
associated a counter with every register to
indicate the number of instructions in the
pipeline for which this register is the
destination

 The appropriate counter is incremented when an
instruction enters the execute stage and
decremented when the instruction is committed

This design is more efficient (less hardware)
because it avoids an associative search

March 2, 2016 http://csg.csail.mit.edu/6.375 L10-34

18

module mkCFFifo(Fifo#(2, t)) provisos(Bits#(t, tSz));

 Ehr#(3, t) da <- mkEhr(?);

 Ehr#(2, Bool) va <- mkEhr(False);

 Ehr#(2, t) db <- mkEhr(?);

 Ehr#(3, Bool) vb <- mkEhr(False);

 rule canonicalize if(vb[2] && !va[2]);

 da[2] <= db[2]; va[2] <= True; vb[2] <= False; endrule

 method Action enq(t x) if(!vb[0]);

 db[0] <= x; vb[0] <= True; endmethod

 method Action deq if (va[0]);

 va[0] <= False; endmethod

 method t first if(va[0]);

 return da[0]; endmethod

 method Action clear;

 va[1] <= False ; vb[1] <= False endmethod

endmodule

Conflict-free FIFO with a
Clear method

If there is only one
element in the FIFO it
resides in da

db da

first CF enq

deq CF enq

first < deq

enq < clear

Canonicalize must be the last rule to fire!

To be discussed
in the tutorial

March 2, 2016 http://csg.csail.mit.edu/6.375 L10-35

Why canonicalize must be
the last rule to fire

first CF enq

deq CF enq

first < deq

enq < clear

rule foo ;

 f.deq; if (p) f.clear

endrule

Consider rule foo. If p is false then canonicalize
must fire after deq for proper concurrency.

If canonicalize uses EHR indices between deq and
clear, then canonicalize won’t fire when p is true

March 2, 2016 http://csg.csail.mit.edu/6.375 L10-36

