
1

Realistic Memories and
Caches

Arvind
Computer Science & Artificial Intelligence Lab.
Massachusetts Institute of Technology

March 9, 2016 http://csg.csail.mit.edu/6.375 L12-1

Multistage Pipeline

PC

Inst
Memory

Decode

Register File

Execute

Data
Memory

d2e

re
di

re
ct

fE
po

ch

eEpoch

nap e2c

scoreboard

The use of magic memories (combinational reads)
makes such design unrealistic

March 9, 2016 http://csg.csail.mit.edu/6.375 L12-2

2

Magic Memory Model

Reads and writes are always completed in
one cycle
 a Read can be done any time (i.e. combinational)
 If enabled, a Write is performed at the rising clock

edge
(the write address and data must be stable at the clock edge)

MAGIC
RAM

ReadData

WriteData

Address

WriteEnable
Clock

In a real DRAM the data will be available several
cycles after the address is supplied

March 9, 2016 http://csg.csail.mit.edu/6.375 L12-3

Memory Hierarchy

size: RegFile << SRAM << DRAM
latency: RegFile << SRAM << DRAM
bandwidth: on-chip >> off-chip

On a data access:
hit (data  fast memory)  low latency access
miss (data  fast memory)  long latency access (DRAM)

Small,
Fast Memory

SRAM

CPU
RegFile

Big, Slow Memory
DRAM

holds frequently used data

why?

March 9, 2016 http://csg.csail.mit.edu/6.375 L12-4

3

Cache organization

Temporal locality: A recently accessed address has a
much higher probability of being accessed in the near
future than other addresses
Spatial locality: If address a is accessed then locations
in the neighborhood of a, e.g., a-1, a , a+1, a+2, are
also accessed with high probability
 Therefore processor caches are almost always organized in

terms of cache lines which are typically 4 to 8 words
 It is also more efficient to transfer cache lines as opposed

to words to the main memory

March 9, 2016 L12-5http://csg.csail.mit.edu/6.375

CacheProcessor Main
Memory

address line-addr

line-dataword

cache line = <Add tag, Data blk>
If the line size is 4 words then the address tag is 4 bits shorter
than the byte address and the data block size is 4 words

Memory Read behavior
Search cache tags to find match for

the processor generated address

Found in cache
a.k.a. hit

Return copy of requested
word from cache

Not in cache
a.k.a. miss

Read block of data
from main memory,
update cache and
return the
requested word

March 9, 2016 http://csg.csail.mit.edu/6.375 L12-6

Is there an empty slot in cache?

Select a cache line to
evict and write it back
to memory if it is dirty
(need a replacement
policy)

no yes

4

Memory Write behavior
Search cache tags to find match for

the processor generated address

Found in cache
a.k.a. hit

Update appropriate
word in cache line

Not in cache
a.k.a. miss

Read block of data
from main memory,
update

March 9, 2016 http://csg.csail.mit.edu/6.375 L12-7

Is there an empty slot in cache?

Select a cache line to
evict and write it back
to memory (Need a
replacement policy)

no yes

Update appropriate
word in cache linewrite-back, write-miss-allocate cache

Store Buffer: Speeding up
Store Misses

A unlike a Load, a Store does not require
memory system to return any data to the
processor; it only requires the cache to be
updated for future Load accesses
A store can be performed in the background;
In case of a store miss, the miss can be
processed even after the store instruction has
retired from the processor pipeline

March 9, 2016 http://csg.csail.mit.edu/6.375 L12-8

5

Store Buffer

Store Buffer (stb) is a small FIFO of (a,v) pairs
A St req is enqueued into stb
 if there is no space in stb further input reqs are blocked

Later a St in stb is stored into L1
A Ld req simultaneously searches L1 and stb; in case of a
miss the request is processed as before
 Can get a hit in at both places; stb has priority
 A Ld can get multiple hits in stb – it must select the most

recent matching entry

mReqQ

mRespQ
L1

Store buffer

March 9, 2016 http://csg.csail.mit.edu/6.375 L12-9

Internal Cache Organization
Cache designs restrict where in cache a
particular address can reside
 Direct mapped: An address can reside in exactly one

location in the cache. The cache location is typically
determined by the lowest order address bits

 n-way Set associative: An address can reside in any
of the a set of n locations in the cache. The set is
typically determine by the lowest order address bits

March 9, 2016 http://csg.csail.mit.edu/6.375 L12-10

6

Direct-Mapped Cache
The simplest implementation

Tag Data BlockV

=

OffsetTag Index

t k b

t

HIT Data Word or Byte

2k

lines

Block number Block offset

What is a bad reference pattern? Strided = size of cache

req address

March 9, 2016 http://csg.csail.mit.edu/6.375 L12-11

2-Way Set-Associative Cache

Tag Data BlockV

=

Block
Offset

Tag Index

t k

b

hit

Tag Data BlockV

Data
Word
or Byte

=

t

March 9, 2016 http://csg.csail.mit.edu/6.375 L12-12

Reduces
conflict
misses by
allowing a
cache line to
go to several
different
slots in a
cache

7

Replacement Policy
In order to bring in a new cache line, another
cache line may have to be thrown out. Which
one?
 No choice in replacement in direct-mapped caches
 For set-associative caches, select a set from the

index
 Select the least recently used, or most recently used, random

...
 Select a not dirty set

How much is performance
affected by the choice?

Difficult to know without benchmarks
and quantitative measurements

March 9, 2016 http://csg.csail.mit.edu/6.375 L12-13

Blocking vs. Non-Blocking
cache

Blocking cache:
 At most one outstanding miss
 Cache must wait for memory to respond
 Cache does not accept requests in the meantime

Non-blocking cache:
 Multiple outstanding misses
 Cache can continue to process requests while waiting

for memory to respond to misses

We will first design a write-back, Write-miss allocate,
Direct-mapped, blocking cache

March 9, 2016 http://csg.csail.mit.edu/6.375 L12-14

8

Blocking Cache Interface

interface Cache;
method Action req(MemReq r);
method ActionValue#(Data) resp;
method ActionValue#(MemReq) memReq;
method Action memResp(Line r);

endinterface

cache

req

resp

memReq

memResp

Processor DRAM or
next level
cache

hitQ

mReqQ

mRespQ

mshr

missReq

Miss_Status
Handling
Register

We will design a write-back, Write-miss allocate, Direct-mapped,
blocking cache, first without and then with store buffer

March 9, 2016 http://csg.csail.mit.edu/6.375 L12-15

Interface dynamics
The cache either gets a hit and responds
immediately, or it gets a miss, in which case it
takes several steps to process the miss
Reading the response dequeues it
Methods are guarded, e.g., the cache may not
be ready to accept a request because it is
processing a miss
A mshr register keeps track of the state of the
cache while it is processing a miss
typedef enum {Ready, StartMiss, SendFillReq,

WaitFillResp} CacheStatus deriving (Bits, Eq);

March 9, 2016 http://csg.csail.mit.edu/6.375 L12-16

9

Extracting cache tags &
index

Processor requests are for a single word but
internal communications are in line sizes
(2L words, typically L=2)
AddrSz = CacheTagSz + CacheIndexSz + LS + 2
Need getIndex, getTag, getOffset functions

tag index L 2

Cache size in bytes

Byte
addresses

function CacheIndex getIndex(Addr addr) = truncate(addr>>4);
function Bit#(2) getOffset(Addr addr) = truncate(addr >> 2);
function CacheTag getTag(Addr addr) = truncateLSB(addr);

truncate = truncateMSB
March 9, 2016 http://csg.csail.mit.edu/6.375 L12-17

Blocking cache
state elements
Vector#(CacheSize, Reg#(Line)) dataArray <-

replicateM(mkRegU);

Vector#(CacheSize, Reg#(Maybe#(CacheTag))) tagArray <-

replicateM(mkReg(tagged Invalid));

Vector#(CacheSize, Reg#(Bool)) dirtyArray <-

replicateM(mkReg(False));

Fifo#(2, Data) hitQ <- mkCFFifo;

Reg#(MemReq) missReq <- mkRegU;

Reg#(CacheStatus) mshr <- mkReg(Ready);

Fifo#(2, MemReq) memReqQ <- mkCFFifo;

Fifo#(2, Line) memRespQ <- mkCFFifo;

CF Fifos are preferable
because they provide better
decoupling. An extra cycle
here may not affect the
performance by much

Tag and valid bits
are kept together
as a Maybe type

March 9, 2016 http://csg.csail.mit.edu/6.375 L12-18

10

Req method
hit processing
method Action req(MemReq r) if(mshr == Ready);

let idx = getIdx(r.addr); let tag = getTag(r.addr);

let wOffset = getOffset(r.addr);

let currTag = tagArray[idx];

let hit = isValid(currTag)?

fromMaybe(?,currTag)==tag : False;

if(hit) begin

let x = dataArray[idx];

if(r.op == Ld) hitQ.enq(x[wOffset]);

else begin x[wOffset]=r.data;

dataArray[idx] <= x;

dirtyArray[idx] <= True; end

else begin missReq <= r; mshr <= StartMiss; end

endmethod

It is straightforward to extend
the cache interface to include
a cacheline flush command

overwrite the
appropriate word
of the line

March 9, 2016 http://csg.csail.mit.edu/6.375 L12-19

Miss processing

mshr = StartMiss ==>
 if the slot is occupied by dirty data, initiate a write

back of data
 mshr <= SendFillReq
mshr = SendFillReq ==>
 send the request to the memory
 mshr <= WaitFillReq
mshr = WaitFillReq ==>
 Fill the slot when the data is returned from the

memory and put the load response in the cache
response FIFO

 mshr <= Ready

Ready -> StartMiss -> SendFillReq -> WaitFillResp -> Ready

March 9, 2016 http://csg.csail.mit.edu/6.375 L12-20

11

Start-miss and Send-fill
rules
rule startMiss(mshr == StartMiss);

let idx = getIdx(missReq.addr);

let tag=tagArray[idx]; let dirty=dirtyArray[idx];

if(isValid(tag) && dirty) begin // write-back

let addr = {fromMaybe(?,tag), idx, 4'b0};

let data = dataArray[idx];

memReqQ.enq(MemReq{op: St, addr: addr, data: data});

end

mshr <= SendFillReq;

endrule

Ready -> StartMiss -> SendFillReq -> WaitFillResp -> Ready

rule sendFillReq (mshr == SendFillReq);

memReqQ.enq(missReq); mshr <= WaitFillResp;

endrule

Ready -> StartMiss -> SendFillReq -> WaitFillResp -> Ready

March 9, 2016 http://csg.csail.mit.edu/6.375 L12-21

Wait-fill rule
Ready -> StartMiss -> SendFillReq -> WaitFillResp -> Ready

rule waitFillResp(mshr == WaitFillResp);

let idx = getIdx(missReq.addr);

let tag = getTag(missReq.addr);

let data = memRespQ.first;

tagArray[idx] <= Valid(tag);

if(missReq.op == Ld) begin

dirtyArray[idx] <= False; dataArray[idx] <= data;

hitQ.enq(data[wOffset]); end

else begin data[wOffset] = missReq.data;

dirtyArray[idx] <= True; dataArray[idx] <= data;

end

memRespQ.deq; mshr <= Ready;

endrule

March 9, 2016 http://csg.csail.mit.edu/6.375 L12-22

12

Rest of the methods
method ActionValue#(Data) resp;

hitQ.deq;

return hitQ.first;

endmethod

method ActionValue#(MemReq) memReq;

memReqQ.deq;

return memReqQ.first;

endmethod

method Action memResp(Line r);

memRespQ.enq(r);

endmethod

Memory side
methods

March 9, 2016 http://csg.csail.mit.edu/6.375 L12-23

Caches: Variable number of cycles
in memory access pipeline stages

PC

Inst
Memory

Decode

Register File

Execute

Data
Memory

f2d

Epoch

m2wd2e

Next
Addr
Pred

scoreboard

insert FIFOs to deal with (1,n) cycle
memory response

f12f2
e2m

March 9, 2016 http://csg.csail.mit.edu/6.375 L12-24

13

Store Buff: Req method
hit processing
method Action req(MemReq r) if(mshr == Ready);

... get idx, tag and wOffset

if(r.op == Ld) begin // search stb

let x = stb.search(r.addr);

if (isValid(x)) hitQ.enq(fromMaybe(?, x));

else begin // search L1

let currTag = tagArray[idx];

let hit = isValid(currTag) ?

fromMaybe(?,currTag)==tag : False;

if(hit) begin

let x = dataArray[idx]; hitQ.enq(x[wOffset]); end

else begin missReq <= r; mshr <= StartMiss; end

end end

else stb.enq(r.addr,r.data) // r.op == St

endmethod

March 9, 2016 http://csg.csail.mit.edu/6.375 L12-25

Store Buff to mReqQ
rule mvStbToL1 (mshr == Ready);

stb.deq; match {.addr, .data} = stb.first;

... get idx, tag and wOffset

let currTag = tagArray[idx];

let hit = isValid(currTag) ?

fromMaybe(?,currTag)==tag : False;

if(hit) begin

let x = dataArray[idx];

x[wOffset] = data; dataArray[idx] <= x; end

else begin missReq <= r; mshr <= StartMiss; end

endrule

March 9, 2016 http://csg.csail.mit.edu/6.375 L12-26

may cause a simultaneous access to L1 cache
arrays, because of load requests

14

Preventing simultaneous
accesses to L1
method Action req(MemReq r) if(mshr == Ready);

... get idx, tag and wOffset

if(r.op == Ld) begin // search stb

let x = stb.search(r.addr);

if (isValid(x)) hitQ.enq(fromMaybe(?, x));

else begin // search L1

...

else stb.enq(r.addr,r.data) // r.op == St

endmethod

lockL1[0] <= True;

rule clearL1Lock; lockL1[1] <= False; endrule

&& !lockL1[1]

L1 needs to be
locked even if
the hit is in stb

rule mvStbToL1 (mshr == Ready);

stb.deq; match {.addr, .data} = stb.first;

... get idx, tag and wOffset

endrule

March 9, 2016 http://csg.csail.mit.edu/6.375 L12-27

Memory System
All processors use store buffers in conjunction
with caches
Most systems today use non-blocking caches,
which are more complicated than the blocking
cache described here
The organization we have described is similar
to the one used by Intel
IBM and ARM use a different caching policy
known as write-through, which simultaneously
updates L1 and sends a message to update
the next level cache

March 9, 2016 L12-28http://csg.csail.mit.edu/6.375

