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The use of magic memories (combinational reads) 
makes such design unrealistic 
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Magic Memory Model

Reads and writes are always completed in 
one cycle
 a Read can be done any time (i.e. combinational)
 If enabled, a Write is performed at the rising clock 

edge
(the write address and data must be stable at the clock edge)

MAGIC
RAM

ReadData

WriteData

Address

WriteEnable
Clock

In a real DRAM the data will be available several 
cycles after the address is supplied
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Memory Hierarchy

size: RegFile <<  SRAM  <<  DRAM
latency: RegFile <<  SRAM  <<  DRAM
bandwidth: on-chip  >>  off-chip    

On a data access:
hit (data  fast memory)  low latency access
miss (data  fast memory)  long latency access (DRAM)

Small,
Fast Memory

SRAM

CPU
RegFile

Big, Slow Memory
DRAM

holds frequently used data

why?
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Cache organization

Temporal locality: A recently accessed address has a 
much higher probability of being accessed in the near 
future than other addresses 
Spatial locality: If address a is accessed then locations 
in the neighborhood of a, e.g., a-1, a , a+1, a+2, are 
also accessed with high probability
 Therefore processor caches are almost always organized in 

terms of cache lines which are typically 4 to 8 words
 It is also more efficient to transfer cache lines as opposed 

to words to the main memory
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CacheProcessor Main
Memory 

address line-addr

line-dataword

cache line = <Add tag, Data blk>
If the line size is 4 words then the address tag is 4 bits shorter 
than the byte address and the data block size is 4 words 

Memory Read behavior
Search cache tags to find match for 

the processor generated address 

Found in cache 
a.k.a.  hit

Return copy of requested 
word from cache

Not in cache
a.k.a. miss

Read block of data 
from main memory, 
update cache and 
return the 
requested word
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Is there an empty slot in cache?

Select a cache line to 
evict and write it back 
to memory if it is dirty
(need a replacement 
policy)

no yes
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Memory Write behavior
Search cache tags to find match for 

the processor generated address 

Found in cache 
a.k.a.  hit

Update appropriate 
word in cache line

Not in cache
a.k.a. miss

Read block of data 
from main memory, 
update
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Is there an empty slot in cache?

Select a cache line to 
evict and write it back 
to memory (Need a 
replacement policy)

no yes

Update appropriate 
word in cache linewrite-back, write-miss-allocate cache

Store Buffer: Speeding up 
Store Misses

A unlike a Load, a Store does not require 
memory system to return any data to the 
processor; it only requires the cache to be 
updated for future Load accesses
A store can be performed in the background; 
In case of a store miss, the miss can be 
processed even after the store instruction has 
retired from the processor pipeline 
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Store Buffer

Store Buffer (stb) is a small FIFO of (a,v) pairs
A St req is enqueued into stb
 if there is no space in stb further input reqs are blocked

Later a St in stb is stored into L1
A Ld req simultaneously searches L1 and stb; in case of a 
miss the request is processed as before
 Can get a hit in at both places; stb has priority
 A Ld can get multiple hits in stb – it must select the most 

recent matching entry

mReqQ

mRespQ
L1

Store buffer
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Internal Cache Organization
Cache designs restrict where in cache a 
particular address can reside
 Direct mapped: An address can reside in exactly one 

location in the cache. The cache location is typically 
determined by the lowest order address bits

 n-way Set associative: An address can reside in any 
of the a set of n locations in the cache. The set is 
typically determine by the lowest order address bits
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Direct-Mapped Cache
The simplest implementation

Tag Data BlockV

=

OffsetTag Index

t k b

t

HIT Data Word or Byte

2k

lines

Block number Block offset 

What is a bad reference pattern? Strided = size of cache

req address
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2-Way Set-Associative Cache

Tag Data BlockV

=

Block
Offset

Tag Index

t k

b

hit

Tag Data BlockV

Data
Word
or Byte

=

t
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Reduces 
conflict 
misses by 
allowing a 
cache line to 
go to several 
different 
slots in a 
cache
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Replacement Policy
In order to bring in a new cache line, another 
cache line may have to be thrown out. Which 
one?
 No choice in replacement in direct-mapped caches
 For set-associative caches, select a set from the 

index
 Select the least recently used, or most recently used, random 

...
 Select a not dirty set

How much is performance 
affected by the choice?

Difficult to know without benchmarks 
and quantitative measurements
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Blocking vs. Non-Blocking 
cache

Blocking cache:
 At most one outstanding miss
 Cache must wait for memory to respond
 Cache does not accept requests in the meantime

Non-blocking cache:
 Multiple outstanding misses
 Cache can continue to process requests while waiting 

for memory to respond to misses

We will first design a write-back, Write-miss allocate, 
Direct-mapped, blocking cache
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Blocking Cache Interface

interface Cache;
method Action req(MemReq r);
method ActionValue#(Data) resp;
method ActionValue#(MemReq) memReq;
method Action memResp(Line r);

endinterface

cache

req

resp

memReq

memResp

Processor DRAM or 
next level 
cache

hitQ

mReqQ

mRespQ

mshr

missReq

Miss_Status
Handling
Register

We will design a write-back, Write-miss allocate, Direct-mapped, 
blocking cache, first without and then with store buffer
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Interface dynamics
The cache either gets a hit and responds 
immediately, or it gets a miss, in which case it 
takes several steps to process the miss
Reading the response dequeues it
Methods are guarded, e.g., the cache may not 
be ready to accept a request because it is 
processing a miss
A mshr register keeps track of the state of the 
cache while it is processing a miss
typedef enum {Ready, StartMiss, SendFillReq, 

WaitFillResp} CacheStatus deriving (Bits, Eq);
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Extracting cache tags & 
index

Processor requests are for a single word but 
internal communications are in line sizes         
(2L words, typically L=2)
AddrSz = CacheTagSz + CacheIndexSz + LS + 2
Need getIndex, getTag, getOffset functions 

tag              index    L  2

Cache size in bytes

Byte 
addresses

function CacheIndex getIndex(Addr addr) = truncate(addr>>4);
function Bit#(2) getOffset(Addr addr) = truncate(addr >> 2);
function CacheTag getTag(Addr addr)   = truncateLSB(addr);

truncate = truncateMSB
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Blocking cache
state elements
Vector#(CacheSize, Reg#(Line)) dataArray <-

replicateM(mkRegU);

Vector#(CacheSize, Reg#(Maybe#(CacheTag))) tagArray <-

replicateM(mkReg(tagged Invalid));

Vector#(CacheSize, Reg#(Bool)) dirtyArray <-

replicateM(mkReg(False));

Fifo#(2, Data) hitQ <- mkCFFifo;

Reg#(MemReq)     missReq <- mkRegU;

Reg#(CacheStatus) mshr <- mkReg(Ready);

Fifo#(2, MemReq) memReqQ <- mkCFFifo;

Fifo#(2, Line) memRespQ <- mkCFFifo;

CF Fifos are preferable 
because they provide better 
decoupling. An extra cycle 
here may not affect the 
performance by much

Tag and valid bits 
are kept together 
as a Maybe type
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Req method
hit processing
method Action req(MemReq r) if(mshr == Ready);

let idx = getIdx(r.addr); let tag = getTag(r.addr);

let wOffset = getOffset(r.addr);

let currTag = tagArray[idx];

let hit = isValid(currTag)? 

fromMaybe(?,currTag)==tag : False; 

if(hit) begin

let x = dataArray[idx];

if(r.op == Ld) hitQ.enq(x[wOffset]);

else begin x[wOffset]=r.data; 

dataArray[idx] <= x;

dirtyArray[idx] <= True; end

else begin missReq <= r; mshr <= StartMiss; end

endmethod

It is straightforward to extend 
the cache interface to include 
a cacheline flush command

overwrite the 
appropriate  word 
of the line
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Miss processing

mshr = StartMiss ==>
 if the slot is occupied by dirty data, initiate a write 

back of data
 mshr <= SendFillReq
mshr = SendFillReq ==>
 send the request to the memory 
 mshr <= WaitFillReq
mshr = WaitFillReq ==>
 Fill the slot when the data is returned from the 

memory and put the load response in the cache 
response FIFO

 mshr <= Ready

Ready -> StartMiss -> SendFillReq -> WaitFillResp -> Ready
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Start-miss and Send-fill 
rules
rule startMiss(mshr == StartMiss);

let idx = getIdx(missReq.addr); 

let tag=tagArray[idx]; let dirty=dirtyArray[idx];

if(isValid(tag) && dirty) begin // write-back

let addr = {fromMaybe(?,tag), idx, 4'b0};

let data = dataArray[idx];

memReqQ.enq(MemReq{op: St, addr: addr, data: data});

end

mshr <= SendFillReq;

endrule

Ready -> StartMiss -> SendFillReq -> WaitFillResp -> Ready

rule sendFillReq (mshr == SendFillReq);

memReqQ.enq(missReq);   mshr <= WaitFillResp;

endrule

Ready -> StartMiss -> SendFillReq -> WaitFillResp -> Ready

March 9, 2016 http://csg.csail.mit.edu/6.375 L12-21

Wait-fill rule
Ready -> StartMiss -> SendFillReq -> WaitFillResp -> Ready

rule waitFillResp(mshr == WaitFillResp);

let idx = getIdx(missReq.addr);

let tag = getTag(missReq.addr);

let data = memRespQ.first;

tagArray[idx] <= Valid(tag);

if(missReq.op == Ld) begin

dirtyArray[idx] <= False; dataArray[idx] <= data;

hitQ.enq(data[wOffset]); end

else begin data[wOffset] = missReq.data;    

dirtyArray[idx] <= True; dataArray[idx] <= data;

end

memRespQ.deq; mshr <= Ready;

endrule
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Rest of the methods
method ActionValue#(Data) resp;

hitQ.deq;

return hitQ.first;

endmethod

method ActionValue#(MemReq) memReq;

memReqQ.deq;

return memReqQ.first;

endmethod

method Action memResp(Line r);

memRespQ.enq(r);

endmethod

Memory side 
methods
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Caches: Variable number of cycles 
in memory access pipeline stages 
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insert FIFOs to deal with (1,n) cycle 
memory response
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Store Buff: Req method
hit processing  
method Action req(MemReq r) if(mshr == Ready);

... get idx, tag and wOffset

if(r.op == Ld) begin // search stb

let x = stb.search(r.addr); 

if (isValid(x)) hitQ.enq(fromMaybe(?, x));

else begin // search L1

let currTag = tagArray[idx];

let hit = isValid(currTag) ? 

fromMaybe(?,currTag)==tag : False; 

if(hit) begin

let x = dataArray[idx]; hitQ.enq(x[wOffset]); end

else begin missReq <= r; mshr <= StartMiss; end

end     end

else stb.enq(r.addr,r.data) // r.op == St

endmethod
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Store Buff to mReqQ
rule mvStbToL1 (mshr == Ready);

stb.deq; match {.addr, .data} = stb.first;

... get idx, tag and wOffset

let currTag = tagArray[idx];

let hit = isValid(currTag) ? 

fromMaybe(?,currTag)==tag : False; 

if(hit) begin

let x = dataArray[idx];

x[wOffset] = data; dataArray[idx] <= x; end

else begin missReq <= r; mshr <= StartMiss; end

endrule
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may cause a simultaneous access to L1 cache 
arrays, because of load requests
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Preventing simultaneous 
accesses to L1
method Action req(MemReq r) if(mshr == Ready);

... get idx, tag and wOffset

if(r.op == Ld) begin // search stb

let x = stb.search(r.addr); 

if (isValid(x)) hitQ.enq(fromMaybe(?, x));

else begin // search L1

...

else stb.enq(r.addr,r.data) // r.op == St

endmethod

lockL1[0] <= True;

rule clearL1Lock; lockL1[1] <= False; endrule

&& !lockL1[1]

L1 needs to be 
locked even if 
the hit is in stb

rule mvStbToL1 (mshr == Ready);

stb.deq; match {.addr, .data} = stb.first;

... get idx, tag and wOffset

endrule
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Memory System
All processors use store buffers in conjunction 
with caches
Most systems today use non-blocking caches, 
which are more complicated than the blocking 
cache described here
The organization we have described is similar 
to the one used by Intel
IBM and ARM use a different caching policy 
known as write-through, which simultaneously 
updates L1 and sends a message to update 
the next level cache
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