~
NV

6.375 Tutorial 2

Guards and Scheduling

Ming Liu

Feb 19, 2016 http://csg.csail.mit.edu/6.375

T02-1

Overview

BSV reviews/notes
Guard lifting

#® EHRs

Scheduling

#®Lab 3

Feb 19, 2016 http://csg.csail.mit.edu/6.375

T02-2

Expressions vs. Actions

Expressions
= Have no side effects (state changes)

s Can be used outside of rules and modules in
assignments

Actions
= Can have side effects
= Can only take effect when used inside of rules

= Can be found in other places intended to be
called from rules

+ Action/ActionValue methods
+ functions that return actions

Feb 19, 2016 http://csg.csail.mit.edu/6.375 T02-3

Variable vs. States

\Variables are used to name
intermediate values

Do not hold values over time

Variable are bound to values
= Statically elaborated

Bit# (32) firstElem = aQ.first();
rule process;

aReg <= firstElem;

endrule

Feb 19, 2016 http://csg.csail.mit.edu/6.375 T02-4

Scoping

#® Any use of an identifier refers to its
declaration in the nearest textually
surrounding scope

module mkShift (Shift#(a));
function Bit# (32) f();
return fromInteger (valueOf (a))<<2;

Bit#(32) a = 1;
rule process;

endfunction
anse == Ay rule process;
endrule aReg <= £();
endrule
endmodule

Functions can take variables from surrounding scope

Feb 19, 2016 http://csg.csail.mit.edu/6.375 T02-5

Guard Lifting

Last Time: implicit/explicit guards
= But there is more to it when there are
conditionals (if/else) within a rule
@Compiler option -aggressive-conditions
tells the compiler to peek into the rule
to generate more aggressive enable
signals
= Almost always used

Feb 19, 2016 http://csg.csail.mit.edu/6.375 T02-6

Guard Examples

rule process; rule process;
if (aReg==True) aQ.deq();
a0.deq () ; Sdisplay (“fire”);
else endrule
bQ.deqg () ;
Sdisplay (“fire”); rule process;
endrule if (aQ.notEmpty)
aQ.deq();
(aReg==True && aQ.notEmpty) || S$display (“fire”) ;
(aReg==False && bQ.notEmpty) ||
endrule

(aQ.notEmpty && aQ.notEmpty) ||
('aQ.notEmpty) = Always fires

Feb 19, 2016 http://csg.csail.mit.edu/6.375 T02-7

Ephemeral History Register
(EHR)

- } 5 QJE r[0]
W[O]datd 5 normal

w[0].en —

L d | A
w[1].data: -_Q bypass
w[l].en —['—’r[l]

[rlol<wlo] | [rl1]<w[1]| [w[0]<w[1]<..]

Encode a notion of “priority” when there
are concurrent writes/reads

Feb 19, 2016 http://csg.csail.mit.edu/6.375 T02-8

Design Example

An Up/Down Counter

Feb 19, 2016 http://csg.csail.mit.edu/6.375

T02-9

Up/Down Counter

Design example

Some modules have inherently conflicting
methods that need to be concurrent

= This example will show a couple of ways to
handle it

interface Counter;
Bit# (8) read;
Action increment; $\\\\\\Inherently

Action decrement; < conflicting

endinterface

Feb 19, 2016 http://csg.csail.mit.edu/6.375

T02-10

Up/Down Counter
Conflicting design

module mkCounter (Counter);

Reg# (Bit# (8)) count <- mkReg(0);

method Bit#(8) read;
return count;
endmethod

method Action increment;

count <= count + 1;
endmethod $\\\\\\\\\\\\\ rpig
Can't fire in the

method Action decrement;

. samecycle

count <= count - 1;
endmethod
endmodule
Feb 19, 2016 http://csg.csail.mit.edu/6.375 T02-11

Up/Down Counter
Conflicting design

read

incr.en || decr.en /\

Feb 19, 2016 http://csg.csail.mit.edu/6.375 T02-12

Concurrent Design
A general technique

Replace conflicting registers with EHRs
Choose an order for the methods

Assign ports of the EHR sequentially to
the methods depending on the desired
schedule

Feb 19, 2016 http://csg.csail.mit.edu/6.375 T02-13

Up/Down Counter

Concurrent design: read < inc < dec

module mkCounter (Counter);

Ehr# (2, Bit#(8)) count <- mkEhr (0);

method Bit# (8) read;
return count([0];
endmethod

method Action increment;

count [0] <= count[0] + 1;
endmethod
method Action decrement;
count[1l] <= count[1l] - 1;
endmethod
endmodule

Feb 19, 2016 http://csg.csail.mit.edu/6.375 T02-14

Up/Down Counter

Concurrent design: read < inc < dec

incr.en

@_ } i read
e P -

Feb 19, 2016 http://csg.csail.mit.edu/6.375 T02-15

Up/Down Counter

Concurrent design: read < inc < dec

; - ﬂ_ \\ read
incr.en

decr.en B 4 % l
(1)<

Feb 19, 2016 http://csg.csail.mit.edu/6.375 T02-16

\ 4

[}

Valid Concurrent Rules

A set of rules r; can fire concurrently if
there exists a total order between the
rules such that all the method calls
within each of the rules can happen in
that given order

= Rules ry, ry, r3 can fire concurrently if there
isan order r;, rj, rsuch thatr, <, rp<r,
and r; < r are all valid

Feb 19, 2016 http://csg.csail.mit.edu/6.375

T02-17

Concurrent rule firing

3 . K 3 [rule
L B B e . 0 B S R B BN B B R S B e
TR 7 | /
|
HW | ...Rk | | clocks
Ri

4 Concurrently executable rules are scheduled to

fire in the same cycle
In HW, states change only at clock edges

Feb 19, 2016 http://csg.csail.mit.edu/6.375

T02-18

Rule Scheduling Intuitions

Can these rules fire in the same cycle?

rule rl1 (a);

x <= 1;
endrule No, guards are mutually exclusive
rule r2 (!'a);

X <= 2;
endrule

Feb 19, 2016 http://csg.csail.mit.edu/6.375

T02-19

Rule Scheduling Intuitions

Can these rules fire in the same cycle?

rule rl;
y <= 1;
endrule

Yes, methods are unrelated
(conflict free)

rule r2;
x <= 1;
endrule

Feb 19, 2016 http://csg.csail.mit.edu/6.375

T02-20

10

Rule Scheduling Intuitions

Is it legal?
Can these rules fire in the same cycle?

rule increment;

X <= x + 1; Calls x._read() and x._write()
endrule

rule decrement;

X <= x - 1; Calls x._read() and x._write()
endrule

increment C decrement, so the two rules will never fire in parallel

Feb 19, 2016 http://csg.csail.mit.edu/6.375

T02-21

Rule Scheduling Intuitions

Can these rules fire in the same cycle?

rule rl;

X <=y

endrule Calls y._read() and x._write()

rule r2;
y <= X;
endrule

Calls x._read() and y._write()

r1 C r2, so the two rules will never fire in parallel

Feb 19, 2016 http://csg.csail.mit.edu/6.375

T02-22

11

Lab 3: Overview

Completing the audio pipeline:
» PitchAdjust
s« FromMP, ToMP

pcm input
¢ Sample N«|: Complex
| FIR ‘ | FromMP ‘ | IFFT |
l Sample N% ComplexMP N—i’ Complex
| Chunker ‘ |PitchAdjust‘ (fremplx)
S Sample N% ComplexMP N Sample
|OverSampIer| | ToMP | | Overlayer |
N Sample N% Complex S% Sample
(tocmplx) | FFT ‘ | Splitter |
Nrt Complex & Sample
Feb 19, 2016 pem output T02-23
Converting C to Hardware
#® Think about what states you need to
keep
Loops in C are sequentially executed;
loops in BSV are statically elaborated
= Unrolled
Feb 19, 2016 http://csg.csail.mit.edu/6.375 T02-24

12

Fixed Point

Twos (2% column
Ones (2° column

Halves (2™) column
TFourths (2% column l

v v v

10.01, = 1x2" + 0x2° + Ox2! + 1x27?

typedef struct {
Bit# (isize) 1i;
Bit# (fsize) f£;

} FixedPoint# (numeric type isize, numeric type fsize)

Feb 19, 2016 http://csg.csail.mit.edu/6.375 T02-25

Fixed Point Arithmetic

Useful FixedPoint functions:
= fXptGetint: extracts integer portion
= fXptMult: full precision multiply

= *: full multiply followed by
rounding/saturation to the output size

Other useful bit-wise functions:
= truncate, truncatelLSB
= zerokExtend, extend

Feb 19, 2016

http://csg.csail.mit.edu/6.375

T02-26

13

BSV Debugging
Display Statements

See a bug, not sure what causes it
Add display statements

Recompile

Run

Still see bug, but you have narrowed it down
to a smaller portion of code

Repeat with more display statements...

Find bug, fix bug, and remove display
statements

Feb 19, 2016 http://csg.csail.mit.edu/6.375 T02-27

BSV Display Statements

#® The $display() command is an action
that prints statements to the simulation
console

#® Examples:
m Sdisplay (“Hello World!”);

m Sdisplay (“"The value of x is %d”, x);

A\

m Sdisplay (“"The value of y is V%,
fshow(y))

Feb 19, 2016 http://csg.csail.mit.edu/6.375 T02-28

14

Ways to Display Values

Format Specifiers

#® %d - decimal

#® %b - binary

#® %0 - octal

#® %h - hexadecimal

@ %0d, %0b, %00, %0h

= Show value without extra whitespace
padding

Feb 19, 2016 http://csg.csail.mit.edu/6.375

T02-29

Ways to Display Values

fshow

® fshow is a function in the FShow typeclass

It can be derived for enumerations and
structures
» FixedPoint is also a FShow typeclass

#® Example:

typedef emun {Red, Blue} Colors deriving (FShow) ;

Color ¢ = Red;
$display(“c is “, fshow(c));

Prints “c is Red”

Feb 19, 2016 http://csg.csail.mit.edu/6.375

T02-30

15

Warning about $display

$display is an Action within a rule

Guarded methods called by $display will
be part of implicit guard of rule

rule process;
if (aQ.notEmpty)
aQ.deq();
Sdisplay(“first elem is %$x”, aQ.first);

endrule
Feb 19, 2016 http://csg.csail.mit.edu/6.375 T02-31
N
/
Feb 19, 2016 http://csg.csail.mit.edu/6.375 T02-32

16

BSV Debugging

Waveform Viewer

Simulation executables can dump VCD
waveforms
B ./simMyTest -V test.vcd

Produces test.vcd containing the values of
all the signals used in the simulator
= Not the same as normal BSV signals

VCD files can be viewed by a waveform
viewer
= Such as gtkwave

The signal names and values in test.vcd
can be hard to understand
» Especially for structures and enumerations

Feb 19, 2016 http://csg.csail.mit.edu/6.375

T02-33

Step 1
Generate VCD File

#®RUN ./simTestName -V test.vcd

Feb 19, 2016 http://csg.csail.mit.edu/6.375

T02-34

17

Step 2
Open Bluespec GUI

Run “bluespec fifo.bspec”

TR | \ote, to run the
Slelel ol Slsl o] heed t0 SSH inte.
: the servers with
PraJech\Its- fifo the “ssh _X"
command

s, | FOr the fifo lab,
fifo.bspec can be
found in

Feb 19, 2016 http://csg.csail.mit.edu/6.375 T02-35

Step 3
Set top module name

Open project options

Emjecll Edt Build Tools Window Message ﬂelpl
= B[zl 88l o0

Open... ifo.bspec is opened. ﬂ
Save

Save As...

Save Placement

Close
Quit
O 5
Specify options for current project /home/acwright’s.1751abs/answersfifo &
Feb 19, 2016 http://csg.csail.mit.edu/6.375 T02-36

18

Step 3
Set top module name

B Project Options

name to match the gl

Set the top module [TelmTeaT TN
b =

Top module I

1 H ba files location Browse. .
compiled module in === |
Bluesim files location bulldDir Browsa...
TestBench.bsv Vg s tcaten sutaai —
Info flles location bulldDir Browse... |
Search Path
bulldDir n L’
:::::B\Mv‘: L_j ﬂl
4 = ==
Display Include patiern * bsv
Display exciude patiern
‘Copy Nags when nodul
FND Yes |
oK | Apply Save and Close cancel
Feb 19, 2016 http://csg.csail.mit.edu/6.375 T02-37
Open Module Viewer
x Bluespec Workstation - fifo
Project Edit Build Tools ﬂlnduwl Message Help |
D@ |0 Poectmes =R
The project ./fifo.bsp Editor Window ﬂ
Package Window
Type Browser
Module Browser
Schedule Analysis
Minimize All
Close All
- E
Activate Module Browser Window /home/acwright'6.175/abs/answers/fifo 7
Feb 19, 2016 http://csg.csail.mit.edu/6.375 T02-38

19

Step 4
Open Module Viewer

Module Browser - fifo

Medule View Wave Viewer

mkTbCFFunctional

Find

=3

hd

o) o

GikWave 20 packages 1 modules

View Source
JumpTo Inst
‘Send Can Fire

‘Send Will Fire

Send Clock
Send Predicate
Send Body

Send To Wave

IR

B

Feb 19, 2016 http://csg.csail.mit.edu/6.375 T02-39
Open Wave Viewer
Module View Wave Viewer |
= mirscrrur RS —
Attach >
Load Dump File... JumpTo Inst
Reload Dump File
Send Can Fire
FizmlCe s Send Will Fire
Clear History hd
Save session... — Send Reg Output
Replay session... Send Clock
Options... Send Predicate
Allow XServer connections
Clase Send Body
H ‘ kd Send To Wave
Find ﬂ Next Prev | Starts the Waveform Viewer tkWay 20 packages 1 modules Y
http://csg.csail.mit.edu/6.375 T02-40

Feb 19, 2016

20

Step 5
Open Wave Viewer

Load Dump File

Directory: ight/6.17

=]
1 bulldDir
€1 gtkwave
B testved

I¥
File name: |test.ved

open
Files of type: All dump files (*.ved,* fsdb," fst,".wi) 4‘ Cancel ‘

Feb 19, 2016

http://csg.csail.mit.edu/6.375 T02-41
O Wave Viewer
© @ GTKWave - fhome/acwright/6.175/labs/answers/Fifo/test.vcd
HEE BEaall € ¥ Fomose To:(14755 us @ Marker: - | Cursor: Osec
¥ S5T Signals Waves
& 35DUPO Time '
main
Type Signals
Filter:
Append | | Insert | | Replace
Feb 19, 2016 http://csg.csail.mit.edu/6.375 T02-42

21

Step 6

Module Browser - fifo

Module View Wave Viewer

Add Some Signals

|

= mkTbCFFunctional
= fifo

data
o
O deqP Reg#(Bit#(2))
O empty Reg#{Bool)
O full Reg#(Bool)
engReq
deqReq
clearReq
0O canonicalize

Bm

Find I

= [J O CLK Clock

O RST Reset

O D_IN Bit#2)
O EN Bool

O Q OUT Bit#(2)

=3

—

E methods provided
_read()
write()

hd

= Kl

¥

GikWave Ready 20 packages 1 modules

:
g
g

JumpTo Inst

Send Can Fire

i

Send Will Fire

§
i

Send Predicate

Send To Wave

£ 12 |1
£}

RS

Feb 19, 2016 http://csg.csail.mit.edu/6.375 T02-43
Add Some Signals
WVIM& |
E mKTeCFFunctional 3 [71 CLK Clock A View Source
& fifo v W
O RST Reset
data S— O DN Bit2) JumpTo Inst
enaP_RegH(EitiH2) O EN Bool
O deqP Reg#{BIti(2)) 0@ ouT Bi M
O empty Reg#{Bool) -)
Dl FegiGoo) Signals || senawmee |
enqReq B = Send Reg Output
deqReq E methods provided ﬂ
clearReq read Send Clock
O canonicalize ' . 0
m write(Send Predicate
. Send Body
Module Hierarchy senaseey |
y :
Find | w| mWext | Prev GikWave Ready 20 packages 1 modules
]
Feb 19, 2016 http://csg.csail.mit.edu/6.375 T02-44

22

Step 7
Look at the Waveforms

GTKWave - /home/acwright/6.175/labsfanswers/fifo/test.vcd

=& f== € » From{osec To:(14755 us
v ssT Signals Waves
$SDUPO e i
main fifo enqP [Bit#(2)]
fifo degP [Bit#(2)]

fifo_empty [Bool]

fifo full [Bool]

Marker: - | Cursor: 113 us

Type Signals

Filter:

Append | | Insert | | Replace

Feb 19, 2016 http://csg.csail.mit.edu/6.375 T02-45
GTKWave - /home facwright/6.175/labs/answers fifo/test.vcd
o B L E === = € 2 Fromosec To:[14755 us (& Marker: - | Cursor: 113 us
v ssT Signals Waves
$SDUPO e i
main fifo enqp/[Bit#(2)]
fifo deqp [Bit#(2)]
fifo_eqpty [Bool]
fifo_ q
Types
Type Signals
Filter:
Append | | Insert | | Replace
Feb 19, 2016 http://csg.csail.mit.edu/6.375 T02-46

23

Step 7

Time

fifo engP [Bit#(2
fifo deqP [Bit#(2
fifo_empty [
fifo full [

Bo
Bo

1]
1]
ol]
ol]

Look at the Waveforms

Feb 19, 2016 http://csg.csail.mit.edu/6.375 T02-47
Add Some More Signals
Module View Wave Viewer |
= Al [Y ViewSource
B ifo W
data HRSTN Resal JumpTo Inst
O enqP Reg#(Bit#(2))
O deqP Reg#(Bit#(2)) Send Can Fire
O empty Reg#{Bool)
0 Regieon) NN
:"q:eq _r hd Send Reg Output
eanea E methods provided ﬂ
clearReq Send Clock
O canenicalize
m Send Predicate
Send Body
y :
Find ﬂ Next | Prev GikWave Ready 20 packages 1 modules
Z
Feb 19, 2016 http://csg.csail.mit.edu/6.375 T02-48

24

Step 8

Time
CLK [Clock
fifo engP [Bit#(2)
fifo degP [Bit#(2)
fifo empty [Bool
fifo full [Bool

2
2

]
]
]
]
]

Add Some More Signals

Feb 19, 2016 http://csg.csail.mit.edu/6.375 T02-49
@ @ Module Browser - fifo
Module View Wave Viewer |
A ——T——
& mKTbGFFunctional A o Oy 1Y View souree
& fife O CAN_FIRE_RL _fifo_canonicalize Boo
data JumpTo Inst
O enqP Reg#(Bit#(2))
O deqP Reg#(BIt#2)) Send Can Fire
O empty Reg#{Bool)
O full Regii{Bool) Send Will Fire
:”q:e“‘ =F Send Reg Output
czlr:q E methods called
0 m‘z@ clearReg/ehrReg.read() Send Clock
m o ./clearReq/ignored_wires/_element_ O —— |
iclearReq/virtual_reg/_element 1.r¢ "
../clearReq/virtual_reg/_element_1i.w Send Body
../clearReq/wires/_element_0.wget()
e -
Find w| MNext | Prev GtkWave Ready 20 packages 1 modules
=l y 20 packag 4
http://csg.csail.mit.edu/6.375 T02-50

Feb 19, 2016

25

Step 9

Add Rules Too

Time

Feb 19, 2016

[
WILL_FIRE RL_fifo_canonicalize [Boo
CAN_FIRE RL_fifo_canonicalize [

CLK [Clock] =
fifo_engP [Bit#(2)
fifo_degP [Bit#(2)

fifo_empty [Bool
fifo_full [Bool
1
1

1
1
1
15
19
15
15

Boo

http://csg.csail.mit.edu/6.375

T02-51

26

