
1

6.375 Tutorial 2

Guards and Scheduling

Ming Liu

Feb 19, 2016 http://csg.csail.mit.edu/6.375 T02-1

Overview

BSV reviews/notes

Guard lifting

EHRs

Scheduling

Lab 3

Feb 19, 2016 http://csg.csail.mit.edu/6.375 T02-2

2

Expressions vs. Actions

Expressions
 Have no side effects (state changes)

 Can be used outside of rules and modules in
assignments

Actions
 Can have side effects

 Can only take effect when used inside of rules

 Can be found in other places intended to be
called from rules

 Action/ActionValue methods

 functions that return actions

Feb 19, 2016 http://csg.csail.mit.edu/6.375 T02-3

Variable vs. States

Variables are used to name
intermediate values

Do not hold values over time

Variable are bound to values
 Statically elaborated

Feb 19, 2016 http://csg.csail.mit.edu/6.375

Bit#(32) firstElem = aQ.first();

rule process;

 aReg <= firstElem;

endrule

T02-4

3

Scoping

Any use of an identifier refers to its
declaration in the nearest textually
surrounding scope

Feb 19, 2016 http://csg.csail.mit.edu/6.375

Bit#(32) a = 1;

rule process;

 aReg <= a;

endrule

module mkShift(Shift#(a));

 function Bit#(32) f();

 return fromInteger(valueOf(a))<<2;

 endfunction

 rule process;

 aReg <= f();

 endrule

endmodule

Functions can take variables from surrounding scope

T02-5

Guard Lifting

Last Time: implicit/explicit guards

 But there is more to it when there are
conditionals (if/else) within a rule

Compiler option -aggressive-conditions

tells the compiler to peek into the rule
to generate more aggressive enable
signals

 Almost always used

Feb 19, 2016 http://csg.csail.mit.edu/6.375 T02-6

4

Guard Examples

Feb 19, 2016 http://csg.csail.mit.edu/6.375

rule process;

 if (aReg==True)

 aQ.deq();

 else

 bQ.deq();

 $display(“fire”);

endrule

rule process;

 if (aQ.notEmpty)

 aQ.deq();

 $display(“fire”);

endrule

(aReg==True && aQ.notEmpty) ||

(aReg==False && bQ.notEmpty) ||

(aQ.notEmpty && aQ.notEmpty) ||

(!aQ.notEmpty)  Always fires

rule process;

 aQ.deq();

 $display(“fire”);

endrule

T02-7

Ephemeral History Register
(EHR)

D Q
0

1 w[0].data

w[0].en

r[0]

normal

bypass
r[1]

0

1 w[1].data

w[1].en

r[0] < w[0] w[0] < w[1] < …. r[1] < w[1]

Feb 19, 2016 http://csg.csail.mit.edu/6.375

Encode a notion of “priority” when there
are concurrent writes/reads

T02-8

5

Design Example

An Up/Down Counter

Feb 19, 2016 http://csg.csail.mit.edu/6.375 T02-9

Up/Down Counter
Design example

Some modules have inherently conflicting
methods that need to be concurrent
 This example will show a couple of ways to

handle it

interface Counter;

 Bit#(8) read;

 Action increment;

 Action decrement;

endinterface

Feb 19, 2016 http://csg.csail.mit.edu/6.375

Inherently
conflicting

T02-10

6

Up/Down Counter
Conflicting design

module mkCounter(Counter);

 Reg#(Bit#(8)) count <- mkReg(0);

 method Bit#(8) read;

 return count;

 endmethod

 method Action increment;

 count <= count + 1;

 endmethod

 method Action decrement;

 count <= count – 1;

 endmethod

endmodule

Feb 19, 2016 http://csg.csail.mit.edu/6.375

Can’t fire in the
same cycle

T02-11

Up/Down Counter
Conflicting design

Feb 19, 2016 http://csg.csail.mit.edu/6.375

D Q

+1

-1

read

incr.en || decr.en

T02-12

7

Concurrent Design
A general technique

Feb 19, 2016 http://csg.csail.mit.edu/6.375

Replace conflicting registers with EHRs

Choose an order for the methods

Assign ports of the EHR sequentially to
the methods depending on the desired
schedule

T02-13

Up/Down Counter
Concurrent design: read < inc < dec

module mkCounter(Counter);

 Ehr#(2, Bit#(8)) count <- mkEhr(0);

 method Bit#(8) read;

 return count[0];

 endmethod

 method Action increment;

 count[0] <= count[0] + 1;

 endmethod

 method Action decrement;

 count[1] <= count[1] – 1;

 endmethod

endmodule

Feb 19, 2016 http://csg.csail.mit.edu/6.375 T02-14

8

D Q
0

1

incr.en

read

0

1

decr.en

Feb 19, 2016 http://csg.csail.mit.edu/6.375

Up/Down Counter
Concurrent design: read < inc < dec

+1

-1

T02-15

D Q
0

1

incr.en

read

0

1

decr.en

Feb 19, 2016 http://csg.csail.mit.edu/6.375

Up/Down Counter
Concurrent design: read < inc < dec

+1

-1

T02-16

9

Valid Concurrent Rules

A set of rules ri can fire concurrently if
there exists a total order between the
rules such that all the method calls
within each of the rules can happen in
that given order

 Rules r1, r2, r3 can fire concurrently if there
is an order ri, rj, rk such that ri < rj, rj < rk,
and ri < rk are all valid

Feb 19, 2016 http://csg.csail.mit.edu/6.375 T02-17

Concurrent rule firing

Concurrently executable rules are scheduled to
fire in the same cycle

In HW, states change only at clock edges

Rules

HW

 Ri  Rj  Rk

 clocks

 rule

 steps

 Ri

 Rj

 Rk

Feb 19, 2016 http://csg.csail.mit.edu/6.375 T02-18

10

Rule Scheduling Intuitions

Feb 19, 2016 http://csg.csail.mit.edu/6.375

Can these rules fire in the same cycle?

rule r1 (a);

 x <= 1;

endrule

rule r2 (!a);

 x <= 2;

endrule

No, guards are mutually exclusive

T02-19

Rule Scheduling Intuitions

Feb 19, 2016 http://csg.csail.mit.edu/6.375

Can these rules fire in the same cycle?

rule r1;

 y <= 1;

endrule

rule r2;

 x <= 1;

endrule

Yes, methods are unrelated

(conflict free)

T02-20

11

Rule Scheduling Intuitions

Is it legal?
Can these rules fire in the same cycle?

rule increment;

 x <= x + 1;

endrule

rule decrement;

 x <= x - 1;

endrule

Feb 19, 2016 http://csg.csail.mit.edu/6.375

Calls x._read() and x._write()

Calls x._read() and x._write()

increment C decrement, so the two rules will never fire in parallel

T02-21

Rule Scheduling Intuitions

Can these rules fire in the same cycle?

rule r1;

 x <= y;

endrule

rule r2;

 y <= x;

endrule

Feb 19, 2016 http://csg.csail.mit.edu/6.375

Calls y._read() and x._write()

Calls x._read() and y._write()

r1 C r2, so the two rules will never fire in parallel

T02-22

12

Lab 3: Overview

Completing the audio pipeline:

 PitchAdjust

 FromMP, ToMP

Feb 19, 2016 http://csg.csail.mit.edu/6.375 T02-23

Converting C to Hardware

Think about what states you need to
keep

Loops in C are sequentially executed;
loops in BSV are statically elaborated

 Unrolled

Feb 19, 2016 http://csg.csail.mit.edu/6.375 T02-24

13

Fixed Point

Feb 19, 2016 http://csg.csail.mit.edu/6.375

10.012 = 1x2
1
 + 0x2

0
 + 0x2

-1
 + 1x2

-2

Twos (2
1
) column

Ones (2
0
) column

Halves (2
-1

) column

Fourths (2
-2

) column

typedef struct {

 Bit#(isize) i;

 Bit#(fsize) f;

} FixedPoint#(numeric type isize, numeric type fsize)

T02-25

Fixed Point Arithmetic

Feb 19, 2016 http://csg.csail.mit.edu/6.375

Useful FixedPoint functions:

 fxptGetInt: extracts integer portion

 fxptMult: full precision multiply

 *: full multiply followed by
rounding/saturation to the output size

Other useful bit-wise functions:

 truncate, truncateLSB

 zeroExtend, extend

T02-26

14

BSV Debugging
Display Statements

See a bug, not sure what causes it

Add display statements

Recompile

Run

Still see bug, but you have narrowed it down
to a smaller portion of code

Repeat with more display statements…

Find bug, fix bug, and remove display
statements

Feb 19, 2016 http://csg.csail.mit.edu/6.375 T02-27

BSV Display Statements

The $display() command is an action
that prints statements to the simulation
console

Examples:
 $display(“Hello World!”);

 $display(“The value of x is %d”, x);

 $display(“The value of y is “,

fshow(y));

Feb 19, 2016 http://csg.csail.mit.edu/6.375 T02-28

15

Ways to Display Values
Format Specifiers

%d – decimal

%b – binary

%o – octal

%h – hexadecimal

%0d, %0b, %0o, %0h

 Show value without extra whitespace
padding

Feb 19, 2016 http://csg.csail.mit.edu/6.375 T02-29

Ways to Display Values
fshow

fshow is a function in the FShow typeclass

It can be derived for enumerations and
structures
 FixedPoint is also a FShow typeclass

Example:

typedef emun {Red, Blue} Colors deriving(FShow);

Color c = Red;

$display(“c is “, fshow(c));

Feb 19, 2016 http://csg.csail.mit.edu/6.375

Prints “c is Red”

T02-30

16

Warning about $display

$display is an Action within a rule

Guarded methods called by $display will
be part of implicit guard of rule

Feb 19, 2016 http://csg.csail.mit.edu/6.375 T02-31

rule process;

 if (aQ.notEmpty)

 aQ.deq();

 $display(“first elem is %x”, aQ.first);

endrule

Extra Stuff

Feb 19, 2016 http://csg.csail.mit.edu/6.375 T02-32

17

BSV Debugging
Waveform Viewer

Simulation executables can dump VCD
waveforms
 ./simMyTest –V test.vcd

Produces test.vcd containing the values of
all the signals used in the simulator
 Not the same as normal BSV signals

VCD files can be viewed by a waveform
viewer
 Such as gtkwave

The signal names and values in test.vcd
can be hard to understand
 Especially for structures and enumerations

Feb 19, 2016 http://csg.csail.mit.edu/6.375 T02-33

Step 1

Generate VCD File
Run ./simTestName -V test.vcd

Feb 19, 2016 http://csg.csail.mit.edu/6.375 T02-34

18

Step 2

Open Bluespec GUI
Run “bluespec fifo.bspec”

Feb 19, 2016 http://csg.csail.mit.edu/6.375

Note, to run the
GUI remotely, you
need to SSH into
the servers with
the “ssh –X”
command

For the fifo lab,
fifo.bspec can be
found in

T02-35

Step 3

Set top module name
Open project options

Feb 19, 2016 http://csg.csail.mit.edu/6.375 T02-36

19

Step 3

Set top module name
Set the top module
name to match the
compiled module in
TestBench.bsv

Feb 19, 2016 http://csg.csail.mit.edu/6.375 T02-37

Step 4

Open Module Viewer

Feb 19, 2016 http://csg.csail.mit.edu/6.375 T02-38

20

Step 4

Open Module Viewer

Feb 19, 2016 http://csg.csail.mit.edu/6.375 T02-39

Step 5

Open Wave Viewer

Feb 19, 2016 http://csg.csail.mit.edu/6.375 T02-40

21

Step 5

Open Wave Viewer

Feb 19, 2016 http://csg.csail.mit.edu/6.375 T02-41

Feb 19, 2016 http://csg.csail.mit.edu/6.375

Step 6

Open Wave Viewer

T02-42

22

Step 6

Add Some Signals

Feb 19, 2016 http://csg.csail.mit.edu/6.375 T02-43

Step 6

Add Some Signals

Feb 19, 2016 http://csg.csail.mit.edu/6.375

Module Hierarchy

Signals

T02-44

23

Step 7

Look at the Waveforms

Feb 19, 2016 http://csg.csail.mit.edu/6.375 T02-45

Step 7

Look at the Waveforms

Feb 19, 2016 http://csg.csail.mit.edu/6.375

Types Human readable
value names

T02-46

24

Step 7

Look at the Waveforms

Feb 19, 2016 http://csg.csail.mit.edu/6.375 T02-47

Step 8

Add Some More Signals

Feb 19, 2016 http://csg.csail.mit.edu/6.375 T02-48

25

Step 8

Add Some More Signals

Feb 19, 2016 http://csg.csail.mit.edu/6.375 T02-49

Step 9

Add Rules Too

Feb 19, 2016 http://csg.csail.mit.edu/6.375 T02-50

26

Step 9

Add Rules Too

Feb 19, 2016 http://csg.csail.mit.edu/6.375 T02-51

