
1

6.375 Tutorial 2

Guards and Scheduling

Ming Liu

Feb 19, 2016 http://csg.csail.mit.edu/6.375 T02-1

Overview

BSV reviews/notes

Guard lifting

EHRs

Scheduling

Lab 3

Feb 19, 2016 http://csg.csail.mit.edu/6.375 T02-2

2

Expressions vs. Actions

Expressions
 Have no side effects (state changes)

 Can be used outside of rules and modules in
assignments

Actions
 Can have side effects

 Can only take effect when used inside of rules

 Can be found in other places intended to be
called from rules

 Action/ActionValue methods

 functions that return actions

Feb 19, 2016 http://csg.csail.mit.edu/6.375 T02-3

Variable vs. States

Variables are used to name
intermediate values

Do not hold values over time

Variable are bound to values
 Statically elaborated

Feb 19, 2016 http://csg.csail.mit.edu/6.375

Bit#(32) firstElem = aQ.first();

rule process;

 aReg <= firstElem;

endrule

T02-4

3

Scoping

Any use of an identifier refers to its
declaration in the nearest textually
surrounding scope

Feb 19, 2016 http://csg.csail.mit.edu/6.375

Bit#(32) a = 1;

rule process;

 aReg <= a;

endrule

module mkShift(Shift#(a));

 function Bit#(32) f();

 return fromInteger(valueOf(a))<<2;

 endfunction

 rule process;

 aReg <= f();

 endrule

endmodule

Functions can take variables from surrounding scope

T02-5

Guard Lifting

Last Time: implicit/explicit guards

 But there is more to it when there are
conditionals (if/else) within a rule

Compiler option -aggressive-conditions

tells the compiler to peek into the rule
to generate more aggressive enable
signals

 Almost always used

Feb 19, 2016 http://csg.csail.mit.edu/6.375 T02-6

4

Guard Examples

Feb 19, 2016 http://csg.csail.mit.edu/6.375

rule process;

 if (aReg==True)

 aQ.deq();

 else

 bQ.deq();

 $display(“fire”);

endrule

rule process;

 if (aQ.notEmpty)

 aQ.deq();

 $display(“fire”);

endrule

(aReg==True && aQ.notEmpty) ||

(aReg==False && bQ.notEmpty) ||

(aQ.notEmpty && aQ.notEmpty) ||

(!aQ.notEmpty) Always fires

rule process;

 aQ.deq();

 $display(“fire”);

endrule

T02-7

Ephemeral History Register
(EHR)

D Q
0

1 w[0].data

w[0].en

r[0]

normal

bypass
r[1]

0

1 w[1].data

w[1].en

r[0] < w[0] w[0] < w[1] < …. r[1] < w[1]

Feb 19, 2016 http://csg.csail.mit.edu/6.375

Encode a notion of “priority” when there
are concurrent writes/reads

T02-8

5

Design Example

An Up/Down Counter

Feb 19, 2016 http://csg.csail.mit.edu/6.375 T02-9

Up/Down Counter
Design example

Some modules have inherently conflicting
methods that need to be concurrent
 This example will show a couple of ways to

handle it

interface Counter;

 Bit#(8) read;

 Action increment;

 Action decrement;

endinterface

Feb 19, 2016 http://csg.csail.mit.edu/6.375

Inherently
conflicting

T02-10

6

Up/Down Counter
Conflicting design

module mkCounter(Counter);

 Reg#(Bit#(8)) count <- mkReg(0);

 method Bit#(8) read;

 return count;

 endmethod

 method Action increment;

 count <= count + 1;

 endmethod

 method Action decrement;

 count <= count – 1;

 endmethod

endmodule

Feb 19, 2016 http://csg.csail.mit.edu/6.375

Can’t fire in the
same cycle

T02-11

Up/Down Counter
Conflicting design

Feb 19, 2016 http://csg.csail.mit.edu/6.375

D Q

+1

-1

read

incr.en || decr.en

T02-12

7

Concurrent Design
A general technique

Feb 19, 2016 http://csg.csail.mit.edu/6.375

Replace conflicting registers with EHRs

Choose an order for the methods

Assign ports of the EHR sequentially to
the methods depending on the desired
schedule

T02-13

Up/Down Counter
Concurrent design: read < inc < dec

module mkCounter(Counter);

 Ehr#(2, Bit#(8)) count <- mkEhr(0);

 method Bit#(8) read;

 return count[0];

 endmethod

 method Action increment;

 count[0] <= count[0] + 1;

 endmethod

 method Action decrement;

 count[1] <= count[1] – 1;

 endmethod

endmodule

Feb 19, 2016 http://csg.csail.mit.edu/6.375 T02-14

8

D Q
0

1

incr.en

read

0

1

decr.en

Feb 19, 2016 http://csg.csail.mit.edu/6.375

Up/Down Counter
Concurrent design: read < inc < dec

+1

-1

T02-15

D Q
0

1

incr.en

read

0

1

decr.en

Feb 19, 2016 http://csg.csail.mit.edu/6.375

Up/Down Counter
Concurrent design: read < inc < dec

+1

-1

T02-16

9

Valid Concurrent Rules

A set of rules ri can fire concurrently if
there exists a total order between the
rules such that all the method calls
within each of the rules can happen in
that given order

 Rules r1, r2, r3 can fire concurrently if there
is an order ri, rj, rk such that ri < rj, rj < rk,
and ri < rk are all valid

Feb 19, 2016 http://csg.csail.mit.edu/6.375 T02-17

Concurrent rule firing

Concurrently executable rules are scheduled to
fire in the same cycle

In HW, states change only at clock edges

Rules

HW

 Ri Rj Rk

 clocks

 rule

 steps

 Ri

 Rj

 Rk

Feb 19, 2016 http://csg.csail.mit.edu/6.375 T02-18

10

Rule Scheduling Intuitions

Feb 19, 2016 http://csg.csail.mit.edu/6.375

Can these rules fire in the same cycle?

rule r1 (a);

 x <= 1;

endrule

rule r2 (!a);

 x <= 2;

endrule

No, guards are mutually exclusive

T02-19

Rule Scheduling Intuitions

Feb 19, 2016 http://csg.csail.mit.edu/6.375

Can these rules fire in the same cycle?

rule r1;

 y <= 1;

endrule

rule r2;

 x <= 1;

endrule

Yes, methods are unrelated

(conflict free)

T02-20

11

Rule Scheduling Intuitions

Is it legal?
Can these rules fire in the same cycle?

rule increment;

 x <= x + 1;

endrule

rule decrement;

 x <= x - 1;

endrule

Feb 19, 2016 http://csg.csail.mit.edu/6.375

Calls x._read() and x._write()

Calls x._read() and x._write()

increment C decrement, so the two rules will never fire in parallel

T02-21

Rule Scheduling Intuitions

Can these rules fire in the same cycle?

rule r1;

 x <= y;

endrule

rule r2;

 y <= x;

endrule

Feb 19, 2016 http://csg.csail.mit.edu/6.375

Calls y._read() and x._write()

Calls x._read() and y._write()

r1 C r2, so the two rules will never fire in parallel

T02-22

12

Lab 3: Overview

Completing the audio pipeline:

 PitchAdjust

 FromMP, ToMP

Feb 19, 2016 http://csg.csail.mit.edu/6.375 T02-23

Converting C to Hardware

Think about what states you need to
keep

Loops in C are sequentially executed;
loops in BSV are statically elaborated

 Unrolled

Feb 19, 2016 http://csg.csail.mit.edu/6.375 T02-24

13

Fixed Point

Feb 19, 2016 http://csg.csail.mit.edu/6.375

10.012 = 1x2
1
 + 0x2

0
 + 0x2

-1
 + 1x2

-2

Twos (2
1
) column

Ones (2
0
) column

Halves (2
-1

) column

Fourths (2
-2

) column

typedef struct {

 Bit#(isize) i;

 Bit#(fsize) f;

} FixedPoint#(numeric type isize, numeric type fsize)

T02-25

Fixed Point Arithmetic

Feb 19, 2016 http://csg.csail.mit.edu/6.375

Useful FixedPoint functions:

 fxptGetInt: extracts integer portion

 fxptMult: full precision multiply

 *: full multiply followed by
rounding/saturation to the output size

Other useful bit-wise functions:

 truncate, truncateLSB

 zeroExtend, extend

T02-26

14

BSV Debugging
Display Statements

See a bug, not sure what causes it

Add display statements

Recompile

Run

Still see bug, but you have narrowed it down
to a smaller portion of code

Repeat with more display statements…

Find bug, fix bug, and remove display
statements

Feb 19, 2016 http://csg.csail.mit.edu/6.375 T02-27

BSV Display Statements

The $display() command is an action
that prints statements to the simulation
console

Examples:
 $display(“Hello World!”);

 $display(“The value of x is %d”, x);

 $display(“The value of y is “,

fshow(y));

Feb 19, 2016 http://csg.csail.mit.edu/6.375 T02-28

15

Ways to Display Values
Format Specifiers

%d – decimal

%b – binary

%o – octal

%h – hexadecimal

%0d, %0b, %0o, %0h

 Show value without extra whitespace
padding

Feb 19, 2016 http://csg.csail.mit.edu/6.375 T02-29

Ways to Display Values
fshow

fshow is a function in the FShow typeclass

It can be derived for enumerations and
structures
 FixedPoint is also a FShow typeclass

Example:

typedef emun {Red, Blue} Colors deriving(FShow);

Color c = Red;

$display(“c is “, fshow(c));

Feb 19, 2016 http://csg.csail.mit.edu/6.375

Prints “c is Red”

T02-30

16

Warning about $display

$display is an Action within a rule

Guarded methods called by $display will
be part of implicit guard of rule

Feb 19, 2016 http://csg.csail.mit.edu/6.375 T02-31

rule process;

 if (aQ.notEmpty)

 aQ.deq();

 $display(“first elem is %x”, aQ.first);

endrule

Extra Stuff

Feb 19, 2016 http://csg.csail.mit.edu/6.375 T02-32

17

BSV Debugging
Waveform Viewer

Simulation executables can dump VCD
waveforms
 ./simMyTest –V test.vcd

Produces test.vcd containing the values of
all the signals used in the simulator
 Not the same as normal BSV signals

VCD files can be viewed by a waveform
viewer
 Such as gtkwave

The signal names and values in test.vcd
can be hard to understand
 Especially for structures and enumerations

Feb 19, 2016 http://csg.csail.mit.edu/6.375 T02-33

Step 1

Generate VCD File
Run ./simTestName -V test.vcd

Feb 19, 2016 http://csg.csail.mit.edu/6.375 T02-34

18

Step 2

Open Bluespec GUI
Run “bluespec fifo.bspec”

Feb 19, 2016 http://csg.csail.mit.edu/6.375

Note, to run the
GUI remotely, you
need to SSH into
the servers with
the “ssh –X”
command

For the fifo lab,
fifo.bspec can be
found in

T02-35

Step 3

Set top module name
Open project options

Feb 19, 2016 http://csg.csail.mit.edu/6.375 T02-36

19

Step 3

Set top module name
Set the top module
name to match the
compiled module in
TestBench.bsv

Feb 19, 2016 http://csg.csail.mit.edu/6.375 T02-37

Step 4

Open Module Viewer

Feb 19, 2016 http://csg.csail.mit.edu/6.375 T02-38

20

Step 4

Open Module Viewer

Feb 19, 2016 http://csg.csail.mit.edu/6.375 T02-39

Step 5

Open Wave Viewer

Feb 19, 2016 http://csg.csail.mit.edu/6.375 T02-40

21

Step 5

Open Wave Viewer

Feb 19, 2016 http://csg.csail.mit.edu/6.375 T02-41

Feb 19, 2016 http://csg.csail.mit.edu/6.375

Step 6

Open Wave Viewer

T02-42

22

Step 6

Add Some Signals

Feb 19, 2016 http://csg.csail.mit.edu/6.375 T02-43

Step 6

Add Some Signals

Feb 19, 2016 http://csg.csail.mit.edu/6.375

Module Hierarchy

Signals

T02-44

23

Step 7

Look at the Waveforms

Feb 19, 2016 http://csg.csail.mit.edu/6.375 T02-45

Step 7

Look at the Waveforms

Feb 19, 2016 http://csg.csail.mit.edu/6.375

Types Human readable
value names

T02-46

24

Step 7

Look at the Waveforms

Feb 19, 2016 http://csg.csail.mit.edu/6.375 T02-47

Step 8

Add Some More Signals

Feb 19, 2016 http://csg.csail.mit.edu/6.375 T02-48

25

Step 8

Add Some More Signals

Feb 19, 2016 http://csg.csail.mit.edu/6.375 T02-49

Step 9

Add Rules Too

Feb 19, 2016 http://csg.csail.mit.edu/6.375 T02-50

26

Step 9

Add Rules Too

Feb 19, 2016 http://csg.csail.mit.edu/6.375 T02-51

