~

6.375 Tutorial 4
RISC-V and Final Projects

Ming Liu

March 4, 2016 http://csg.csail.mit.edu/6.375 T04-1

Overview

Branch Target Buffers
#® RISC V Infrastructure
Final Project

March 4, 2016 http://csg.csail.mit.edu/6.375 T04-2

Two-stage Pipeline with BTB

T Fetch Decode-RegisterFetch-Execute-Memory-WriteBack
Update BTB

{PC, correct PC} Register File

_ BTB
Predict Next PC ‘-I \ misprediction J
correct pc %
|PC I:]: f2d Decode[____|Execute

| [

Inst Data
Memory Memory

4 BTB: Branch Target Buffer
At fetch: Use BTB to predict next PC

At execute: Update BTB with correct next PC
= Only if instruction is a branch (iType == J, Jr, Br)

March 4, 2016 http://csg.csail.mit.edu/6.375 T04-3

Next Address Predictor:
Branch Target Buffer (BTB)

< 2k-entry direct-mapped BTB
I | pC |
PG target; [valid
k ° ° °
iMem ¢ : . .
Even small BTBs are effective @ l ‘

BTB remembers recent targets for a set of control instructions

= Fetch: looks for the pc and the associated target in BTB; if pc in
not found then ppc is pc+4

= Execute: checks prediction, if wrong kills the instruction and
updates BTB (only for branches and jumps)

March 4, 2016 http://csg.csail.mit.edu/6.375 T04-4

Next Addr Predictor interface

interface AddrPred;

method Addr nap (Addr pc);

method Action update (Redirect rd);
endinterface

Two implementations:
Simple PC+4 predictor
Predictor using BTB

March 4, 2016 http://csg.csail.mit.edu/6.375

T04-5

Simple PC+4 predictor

module mkPcPlus4 (AddrPred) ;
method Addr nap (Addr pc);
return pc + 4;
endmethod

method Action update (Redirect rd);
endmethod
endmodule

March 4, 2016 http://csg.csail.mit.edu/6.375

T04-6

BTB predictor

module mkBtb (AddrPred) ;
RegFile# (BtbIndex, Addr) ppcArr <- mkRegFileFull;
RegFile# (BtbIndex, BtbTag) entryPcArr <- mkRegFileFull;
Vector# (BtbEntries, Reg# (Bool))
validArr <- replicateM(mkReg (False));

function BtbIndex getIndex (Addr pc)=truncate (pc>>2);
function BtbTag getTag (Addr pc) = truncatelSB(pc);
method Addr nap (Addr pc);

BtbIndex index = getIndex(pc);

BtbTag tag = getTag(pc);

if (validArr[index] && tag == entryPcArr.sub (index))

return ppcArr.sub (index) ;
else return (pc + 4);

endmethod
method Action update (Redirect redirect);
endmodule
March 4, 2016 http://csg.csail.mit.edu/6.375 T04-7

BTB predictor update method

redirect input contains a pc, the correct next pc and
whether the branch was taken or not (to avoid making
entries for not-taken branches)

method Action update (Redirect redirect);
if (redirect.taken)

begin
let index = getIndex(redirect.pc);
let tag = getTag(redirect.pc);
validArr[index] <= True;
entryPcArr.upd (index, tag);
ppcArr.upd(index, redirect.nextPc);

end
else if (tag == entryPcArr.sub (index))
validArr[index] <= False;
endmethod

March 4, 2016 http://csg.csail.mit.edu/6.375 T04-8

Multiple Predictors: BTB +
Branch Direction Predictors

mispred
Next Addr insts
must be
tight Pred ‘—| l filtered
loop Br Dir correct correct
Pred mispred mispred
| | |
M Decode (e e e é‘;gd eee| Execute |o®° \évarl:t:
Instr type, Simple Complex
eed PC relative conditions, conditions
next PC targets register targets available
immediately available available
March 4, 2016 http://csg.csail.mit.edu/6.375 T04-9
SCE-MI Infrastructure
(

March 4, 2016 http://csg.csail.mit.edu/6.375

T04-10

RISC-V Interface

/ mkProc - BSV \

-+

cpuToHost

hostToCpu

Host
(Testbench)

iMemInit

dMemlnit

March 4, 2016

CSR
K=

] R

Core

N /

http://csg.csail.mit.edu/6.375

T04-11

J -
interface Proc;

endinterface

typedef struct {

RISC-V Interface

CpuToHostType c2hType;

Bit#(16) data;

} CpuToHostData deriving (Bits, Eq);

typedef enum

ExitCode, PrintChar, PrintIntLow,
} CpuToHostType deriving(Bits, Eq);

March 4, 2016

http://csg.csail.mit.edu/6.375

method Action hostToCpu (Addr startpc);
method ActionValue# (CpuToHostData)
interface MemInit iMemInit;
interface MemInit dMemInit;

cpuToHost;

PrintIntHigh

T04-12

RISC-V Interface: cpuToHost

Write mtohost CSR: csrw mtohost, rsi1
» rs1[15:0]: data
+ 32-bit Integer needs two writes
m rs1[17:16]: c2hType
+ 0: Exit code
+ 1: Print character
+2: Print int low 16 bits
+ 3: Print int high 16 bits

typedef struct {
CpuToHostType c2hType;
Bit#(16) data;
} CpuToHostData deriving (Bits, Eq);

March 4, 2016 http://csg.csail.mit.edu/6.375 T04-13

RISC-V Interface: Others

#® hostToCpu

= Tells the processor to start running from the
given address

#® iMemInit/dMemInit

= Used to initialize iMem and dMem

= Can also be used to check when
initialization is done

s Defined in MemInit.bsv

March 4, 2016 http://csg.csail.mit.edu/6.375 T04-14

tb - C++

P

SceMi Interface

N

mkProc - BSV \

R
CSR

\ 4

A 4

March 4, 2016

\ 4

PC

—

Core

- J

http://csg.csail.mit.edu/6.375

T04-15

tb - C++

add.riscv.vmh

Load Program

mkProc - BSV \

)

A

CSR

v

PC

—

Core

A\ 4

iMem l:

v

b

dMem [

N J

Bypass this step in simulation

March 4, 2016

http://csg.csail.mit.edu/6.375

T04-16

Load Program

tb - C++

P

mkProc - BSV

N

CSR

A 4

PC

—

\ 4

N iMem l:

A 4

dMem [

)

-

4

N

Core

Simulation: load with mem.vmh (fixed file name)
= Copy <test>.riscv.vmh to mem.vmh

March 4, 2016

http://csg.cs

ail.mit.edu/6.375

T04-17

March

tb - C++

Start Processor

Starting PC
0x200

N

mkProc - BSV

CSR

PC

A 4

\ 4

4, 2016

\ 4

5 iMem t
1 dMem [

>

R

Core

-~

N J

http://csg.csail.mit.edu/6.375

T04-18

Print & Exit

A 4

tb - C++ / mkProc - BSV \
Get re |] / \
g <

c2hType: N L CSR
1,2,3: print T
0: Exit > PC

Data == s Core

Data =0 —

March 4, 2016 http://csg.csail.mit.edu/6.375 T04-19
N\
L/
Final Project
p
March 4, 2016 http://csg.csail.mit.edu/6.375 T04-20

10

Overview

Groups of 2-3 students

Each group assigned to a graduate
mentor in our group

#® Groups meet individually with Arvind,
mentor and me

#® Weekly reports due before the meeting
= Email to 6.375-admin@mit.edu and mentor

March 4, 2016 http://csg.csail.mit.edu/6.375 T04-21

Schedule

S

Week Date Deliverable

0 Tuesday, March 15 Preliminary Proposal
0 Wednesday, March 16 Project Idea Presentation
1 Week of March 28 Final Proposal, High-Level Design and Test Plan
2 Week of April 4 Microarchitectural Description
3 Week of April 11 Implementation Status and Planned Exploration
4 Week of April 18 First Synthesis Results
5 Week of April 25 Simulation Demonstration
6 Week of May 2 FPGA Demonstration
7 Wednesday, May 11 Final Report, Final Presentation
Figure 1: Schedule of Deliverables
March 4, 2016 http://csg.csail.mit.edu/6.375 T04-22

11

mailto:6.375-admin@mit.edu
mailto:6.375-admin@mit.edu
mailto:6.375-admin@mit.edu

Project Considerations

Design a complex digital system

Choose an application that could benefit from
hardware acceleration or FPGAs

Application should be well understood
= Find/implement reference software code

Look at past year projects on the website

March 4, 2016 http://csg.csail.mit.edu/6.375

T04-23

FPGA IPs and Resources

Many Xilinx related IPs are available in the
BSV library
= $BLUESPECDIR/BSVSource/Xilinx
= BRAMs, DRAM, Clock generators/buffers, LED

controller, HDMI controller, LCD controller

Can wrap Verilog libraries/IPs in BSV code
using importBVI
= Tutorial:

http://wiki.bluespec.com/Home/Experienced-
Users/Import-BVI

March 4, 2016 http://csg.csail.mit.edu/6.375

T04-24

12

http://wiki.bluespec.com/Home/Experienced-Users/Import-BVI
http://wiki.bluespec.com/Home/Experienced-Users/Import-BVI
http://wiki.bluespec.com/Home/Experienced-Users/Import-BVI
http://wiki.bluespec.com/Home/Experienced-Users/Import-BVI
http://wiki.bluespec.com/Home/Experienced-Users/Import-BVI
http://wiki.bluespec.com/Home/Experienced-Users/Import-BVI

BRAMs on FPGASs

Fast, small, on-chip distributed RAM on FPGA

= 1 cycle access latency
= 36Kbits x 1500 (approx) = ~6.75MB total
= Up to 2 ports

Port A Port B
Request Request
BRAM
Resp Resp
March 4, 2016 http://csg.csail.mit.edu/6.375 T04-25

BRAMs in BSV Library

2 Ported BRAM server: mkBRAM2Server()
Large FIFOs: mkSizedBRAMFIFO()

Large sync FIFOs: mkSyncBRAMFIFO()

Primitive BRAM: mkBRAMCore2()

import BRAM::*;

BRAM Configure cfg = defaultValue ;

cfg.memorySize = 1024*32 ; //define custom memorySize

//instantiate 32K x 16 bits BRAM module

BRAM2Port# (UInt# (15), Bit#(16)) bram <- mkBRAM2Server (cfqg)

rule doWrite;

bram.portA.request.put (BRAMRequest {

write: True,
responseOnWrite: False,
address: 15'h01
datain: data });

it adiy/6-375
76375

’

M h 4 2016 Ny
FER4,—2016 AP /7 €Sg-€Sat-fittea

13

DRAM on FPGA

Large capacity (1GB on
VC707) DRAM

4 Longer access latency,
especially random access Off-chip

@ BSV library at FPGA DDR3 Pin
SBLUESPECDIR/BSVSource/ =

Xilinx/XilinxVC707DDR3.bsv
Misc/DDR3.bsv DRAM Controller IP

IS

= Not officially in documentation BSV Wrapper

Example code will be given as

part of Lab 6 DDR3 Use
r

March 4, 2016 http://csg.csail.mit.edu/6.375 T04-27

DRAM Request/Response
I

512-bit wide user interface

DDR Request:
= Write: write or read
= Byteen: byte enable mask. Which of the 8-bit bytes

in the 512-bits will be written

= Address: DRAM address for 512-bit words
= Data: data to be written

DDR Response:
= Bit#(512) read data

March 4, 2016 http://csg.csail.mit.edu/6.375 T04-28

14

Indirect Memory Access

PCIe device (FPGA)

= Low bandwidth, consumes CPU cycles
s Used in SceMi: ~50MB/s

Host CPU
N
—h
Host
DRAM FPGA
FPGA
DRAM

March 4, 2016 http://csg.csail.mit.edu/6.375

Host CPU load/stores data from host DRAM to

T04-29

- Direct Memory Access (DMA)

Host CPU sets up DMA engine

DMA engine performs data transfer

= High bandwidth, minimal CPU involved: 1-4 GB/s
= Not supported by SceMi

Host CPU
— \
DMA E
SRAN
FPGA
FPGA
DRAM

March 4, 2016 http://csg.csail.mit.edu/6.375

T04-30

15

Connectal
A SceMi Alternative

Open source hardware/software co-
design library

» Generates glue logic between
software/hardware

= Supports DMA

@ https://qgithub.com/cambridgehackers/c
onnectal

Guest lecture next Wed on this

March 4, 2016 http://csg.csail.mit.edu/6.375 T04-31

16

https://github.com/cambridgehackers/connectal
https://github.com/cambridgehackers/connectal
https://github.com/cambridgehackers/connectal

