

6.375 Tutorial 5

RISC-V 6-Stage with Caches

Ming Liu

March 4, 2016 http://csg.csail.mit.edu/6.375 T04-1

Overview

Interface as parameters

6 Stage Pipeline

Caches

March 4, 2016 http://csg.csail.mit.edu/6.375 T04-2

Notes

In Lab 6, you should use the Fifo::*;
library defined in includes/

 Do NOT use the BSV library FIFO::*;

Code shown in lecture is meant to be a
guideline

 Make sure you understand it because the
code you write in the lab may be similar but
not identical

March 4, 2016 T04-3 http://csg.csail.mit.edu/6.375

Interfaces as Module Parameters

Entire interfaces/subinterfaces (not just static types)
can be passed as a parameter into a module

March 4, 2016 T04-4 http://csg.csail.mit.edu/6.375

module mkTb();

 Integer init = 0;

 IMemory iMem <- mkIMemory;

 Proc#(2) p <- mkProc(iMem, init);

endmodule

module mkProc(IMemory mem,

 Integer init,

 Proc#(ncores) ifc);

 rule doFetch;

 mem.req(addr);

 ..

 endrule

 method ... //define Proc interface

 endmethod

endmodule

Last parameter is
always interface of
module being defined

module mkProc(Proc);

endmodule

“ifc” is optional
when no other
parameters

Interfaces as Module Parameters

Passing interfaces to a module breaks
synthesis boundary (*synthesize*)

 Compiler currently cannot create a separate Verilog
file for this module due to scheduling difficulties

Beware that all the scheduling/rule legality
checks are still in place. Even across modules

March 4, 2016 T04-5 http://csg.csail.mit.edu/6.375

module mkTb();

 IMemory iMem <- mkIMemory;

 Proc p0 <- mkProc(iMem);

 Proc p1 <- mkProc(iMem);

endmodule

If both p0 and p1 contain
rules that calls iMem.req,
then they may conflict.

Six Stage Pipeline

Use the 2-stage pipeline as a starting point. Subdivide
the rules and create Fifos (elastic pipeline) between
stages.

 Not necessary to try and modularize the stages

March 4, 2016 T04-6 http://csg.csail.mit.edu/6.375

IMem DMem

F D R E M W

Scoreboard

RegFile Epoch

Six Stage Pipeline
At Execute stage, we filter out instructions with
mismatched epochs (caused by a prior branch insn)

However we can’t just “kill” or toss out the instruction
as we did in the 2 stage. Why?

March 4, 2016 T04-7 http://csg.csail.mit.edu/6.375

IMem DMem

F D R E M W

Scoreboard

RegFile Epoch

RegFetch stage has changed state of our processor  Scoreboard insert!

Solution: Mark instruction as “poisoned” and pass it on (but do not
process it). Remove from SB in Writeback stage

Other Notes

Play with the type/size of RegFile and
Scoreboard to see its effect on
performance

Look at info_dut/mkProc.sched to see

if the schedule is what you expect

Pay attention to scheduling warnings
related to your processor

March 4, 2016 T04-8 http://csg.csail.mit.edu/6.375

Part B: FPGA Infrastructure

Runs large benchmarks

SW-mkProc Interface

 Start PC

 mtohost

 Init DRAM

Avoid re-programming FPGA

 Reset FPGA after each test
Nov 6, 2015 T06-9 http://csg.csail.mit.edu/6.175

mkProc

1GB DRAM

SW testbench

Start PC

mtohost

Init DRAM

Simulation

DRAM

 RegFile + pipelined delay of resp

We also simulate DRAM initialization

 Longer simulation time

Nov 6, 2015 T06-10 http://csg.csail.mit.edu/6.175

Reg file ...

Memory Interface

March 4, 2016 T04-11 http://csg.csail.mit.edu/6.375

DDR3 Mem
Controller

1GB DRAM

WideMemWrapper

Splitter

DCache ICache

To proc pipeline stages

InitDDR3
Scemi/Tb

Implementing Cache

MemUtil.bsv and CacheTypes.bsv has a lot of
useful utilities functions and constants you
should use

Port code from DDR3Example.bsv to your 6-
stage pipeline

 Only very minor changes to the pipeline itself is
needed

Guard all your rules in processor with
(csrf.started)

 Proc should execute only when the host tells it to
start

March 4, 2016 T04-12 http://csg.csail.mit.edu/6.375

