
Final Project Report: Hardware Accelerated Genetic
Optimization for PCB Layer Assignment

Heather Berlin, Zachary Zumbo
6.375: Complex Digital Systems

Project Mentor: Chanwoo Chung

December 11, 2019

1 Acknowledgements

We would like to acknowledge 6.375 TAs Chanwoo Chung and Shuotao Xu, as well as
Professor Arvind for their mentorship and guidance throughout the research, design and
implementation of this project. Without them, there would be no final implementation.

2 Problem Statement

Many modern problems are combinatorial in nature, have exponential time deterministic
solutions or have very high dimensional search spaces. For example, the traveling salesman
problem (which asks for the optimal route through a list of N cities) is NP-Hard and is
known to be infeasible to solve for large N. Instead of using an exact algorithm, we can
take advantage of non-determinism / stochastic processes to grow solutions that quickly find
optima, especially if we aren’t worried about finding it globally. One optimization strategy
that fits this mold is genetic optimization (GenOpt).

Two major issues with using a GenOpt strategy are finding an effective model / fitness
function for the problem, and getting a solution within a reasonable amount of time. Luck-
ily, some problems map very well to a GenOpt approach, and we can also translate the
GenOpt process to hardware which will allow for parallelism inside the micro-architecture,
circumventing typical compute-bound CPU approaches. Unfortunately, GenOpt as a general
concept is not easily mappable to hardware due to each problem having a specific represen-
tation. For example, the traveling salesman problem has a different genetic representation
than the popular OneMax problem (crossover must be implemented completely differently).

Instead of attempting to implement a generalized approach to GenOpt, we will apply
GenOpt to a problem in the domain of printed circuit board design. More specifically, we
would like to find an optimal layer assignment for K straight line segments on a L layer
board that would minimize crossings on each layer. Take Figure 1 as an example. Notice

1



the lines L3 and L6 intersect on the same layer (red). Moving L6 to the yellow layer would
resolve this crossing. This is what our algorithm will seek to do automatically.

Figure 1: Example PCB. Each line color represents a different layer.

3 Background

GenOpt is based on the biological concept of Darwinian evolution. In nature, variations in
genetic material (i.e. DNA) gives rise to small differences in physical expression, which affects
an individual creature’s ability to mate and survive in a process called natural selection. This
phenomenon is named such because the changes occur naturally through genetic operators
called crossover (mating) and mutation, and generally the most well adapted creatures are
able to find food, a mate, and evade prey.

If we can find a way to map this concept of Darwinian evolution to an algorithm, we
can often get arbitrarily close to solving exponential time problems. We can see population
diversity in the Darwinian model as a mechanism for exploring a high-dimensional state
space, and use a fitness function to model how well equipped an individual is to survive in
the environment and pass on its genes to the next generation. In order to solve problems in
terms of GenOpt, a chromosome, genetic operators, and a fitness function need to be defined
in relation to the problem. In the next section, we will explain how the concepts of GenOpt
apply to our multi-layer line intersection problem, and our vision for the high-level design.

4 Benefits of modeling on an FPGA

Genetic algorithms are useful for optimizations problems that have many parameters across
a large search space, where traditional techniques may run into troubles. Implementing

2



Figure 2: General steps in Genetic Optimization

Figure 3: Labels represent the lines that intersect if placed on a single layer together

genetic optimization on hardware allows for highly parallelized operations, allowing us to
solve the problem faster than we’d otherwise be able to if we used software alone.

5 FPGA Inputs

We will use connectal to communicate between the host processor and FPGA. The host PC
will provide a serialized list of connection index pairs that are known to intersect when on
one layer. These give us an idea of the candidate intersections to check when calculating
fitness. An example of how this will look for the design in Figure 1 is in Figure 3

Note that for our problem statement, the line segment positions are fixed, and our goal is
to find the optimal z values for each line to minimize the number of line segment intersections.

The variable N LEVELS indicating the total number of levels on the PCB is fixed in our
framework. Note that for each gene index i in an individual, zi is the value of that gene, an
integer such that 0 ≤ zi ≤N LEVELS-1. The initial level assignments for each individual in
the population will be generated randomly on the hardware side during initialization.

5.1 Loading intersecting pairs

The input intersecting pairs will be loaded from a binary file, intersecting-pairs.bin.
intersecting-pairs.bin contains connection index information every 2 bytes. Since there
are two indices in a pair, each pair takes 4 bytes. For our example in Figure 3, our input file
would be 6 pairs * 2 indices/pair * 2 bytes/index or 24 bytes total, and would look like the
following (assuming conversion of labels to their associated index, i.e. L1 becomes 1):

0002 0004 0003 0004 0003 0005 0003 0006 0005 0006 0005 0007

5.1.1 Creation of the intersecting pairs binary file, intersecting-pairs.bin

We create the intersecting pairs input file, intersecting-pairs.bin, by running a python
script and specifying the number of line segments to be placed on the PCB along the with

3



number of desired intersecting pairs for the intersecting-pairs.bin to contain. The
python code for this is located in our git repository in create intersectingpairs input.py.

6 High-level design

Before any hardware design occurs, we need to define our problem in terms of Darwinian
evolution, which is outlined in Figure 2. Then, we can break up the problem into modules
which will help compartmentalize and modularize the design process.

In our case, it makes sense to model a set of line segments and their layer information
as a single chromosome, with each gene being an integer representing a layer a single line
segment is on. This is because a chromosome is a set of full design parameters which acts as
an individual, and an individual should represent a potential solution to the problem. Thus,
a population would represent a set of possible designs which have different fitness scores.

population =



[
z1, z2 . . . zk

]
1[

z1, z2 . . . zk

]
2

...[
z1, z2 . . . zk

]
M

{
chromosome for the M thcandidate design

For a set of k connections with fixed end points regardless of their layer placement, a chromosome
in the population contains a potential configuration of the z (level) positions for each of the line
segments. Within a chromosome, the ith gene, zi, represents ith line segment’s z coordinate, which
can be any integer between 1 and the number of levels, N .

The fitness function will evaluate an individual by the sum of crossings on each layer. This
will tie in with the selection algorithm which will seek individuals with a low number of crossings.
Mutation will randomly modify layer information, and crossover will swap two chromosome’s infor-
mation via array splicing (in hardware this will just be a mux). The full pipeline will be initialized
by user stimulus with a preset or randomized initial population, then the key steps of GenOpt will
run until a stop condition is met. GenOpt will then yield the best individual to the user.

6.1 Common Params

6.1.1 GenOptTypes.bsv

These are fixed types defined for use on a single design, i.e. PCB. Thus, compilation of the bluespec
module will happen once per design, and the rest of the variable parameters will be passed in prior
to running GenOpt. Fixed parameters include the number of layers (N LAYERS), the number of
intersecting pairs (N INTPAIRS) and the number of connections / genes (N CONNECTIONS).

Randomization is essential for genetic optimization; to decide whether to modify datapoints
using the user-defined probabilities mutpb, indpb, and cxpb, we will generate a random number of
RAND SIZE bits and compare it to the relevant probability threshold (the probability multiplied by
2RAND SIZE. We chose RAND SIZE to be 8, which allows us to get within a half of a percentage point
of precision when using the probability thresholds, since 256 is the upper bound.

4

https://github.mit.edu/hberlin/6.375-final-project/blob/master/code/genopt/connectal/create_intersectingpairs_input.py


typedef 8 N_LAYERS;

typedef 100 N_CONNECTIONS;

typedef 50 N_INTPAIRS;

// <A,B> is the same as <B,A>, i.e. pairs are not double counted.

typedef N_CONNECTIONS N_GENES; // Same meaning

typedef 8 RAND_SIZE; // number of bits denoting size of random value generated

typedef 100 MAX_POP_SIZE; // (was 8 for Selection test)

typedef 20 MAX_TOURN_SIZE; // Keep this <= MAX_POP_SIZE

typedef TAdd#(TLog#(MAX_POP_SIZE), 1) LOG_MAX_TOURN_SIZE;

typedef TAdd#(TLog#(MAX_POP_SIZE), 1) LOG_MAX_POP_SIZE;

typedef Bit#(TLog#(N_LAYERS)) Layer; // Which layer a line segment / connection is on.

typedef Vector#(N_GENES, Layer) Chromosome; // What we actually want to modify in GenOpt

interface GeneticOptimizer;

method Action setIndividualMutationProb(Bit#(RAND_SIZE) indpb); //setIndpb

method Action setGeneMutationProb(Bit#(RAND_SIZE) mutpb); //setMutpb

method Action setCrossoverProb(Bit#(RAND_SIZE) cxpb); //setCxpb

method Action setPopulationSize(UInt#(LOG_MAX_POP_SIZE) pop_size);//setPopSize

method Action setTournamentSize(Bit#(LOG_MAX_POP_SIZE) tourn_size);

method Action setNumGenerations(Bit#(32) ngen);

method Action putSampleInput(CxnPair in); // put int pair into the intpairs vec

method Chromosome getChromosomeOutput;

endinterface

7 Genetic Optimization Pipeline

For our genetic optimization pipeline, we use a test bench connectal test.cpp to send and receive
populations through connectal portals. Our full framework, which we describe next, is shown in
Fig. 4.

5



Figure 4: Updated genetic optimization diagram

6



7.1 GeneticOptPipeline.bsv

LFSR#(Bit#(RAND_SIZE)) lfsr <- mkLFSR_8 i_rand; //use to generate random integers

module mkGeneticOptPipeline(GeneticOptimizer);

GeneticOptimizer genopt <- mkGeneticOptimizer();

endmodule

// make specialized Fitness in its own synthesis boundary

module mkGenOptPipelineFitness(SettableFitness#(N_GENES, POPULATION_SIZE));

SettableFitness#(N_GENES, POPULATION_SIZE) <- mkFitness();

return fitness;

endmodule

// make specialized Select in its own synthesis boundary

module mkGenOptPipelineSelection(SettableSelection#(N_GENES, 16));

SettableSelection#(N_GENES, 16) selection <- mkSelection();

return selection;

endmodule

// make specialized Crossover in its own synthesis boundary

module mkGenOptPipelineCrossover(SettableCrossover#(N_GENES, 16));

SettableCrossover#(CXPB) crossover <- mkCrossover();

return crossover;

endmodule

// make specialized Mutate in its own synthesis boundary

module mkGenOptPipelineMutation(SettableMutation#(N_GENES, 16));

SettableMutation#(N_GENES, 16) mutation <- mkMutation();

return mutation;

endmodule

7.2 Initialization

7.2.1 Initializing the population

At the first generation k = 1, we will randomly initialize the population, Xk. We only need
to initialize the population once. If it is the first generation, we need to randomly initialize a
population to use throughout the genetic optimization process.

For each of the N chromosomes in the population, generate M (number of genes, i.e. number of
connections on PCB board) random integers between 1 and L (number of layers on PCB board) to
create a chromosome vector containing M genes (the i-th gene in a chromosome specifies the layer
assignment for the i-th connection on the PCB). The population will contain N chromosomes, each
chromosome containing M genes.

7.2.2 Bits required (storing in BRAM)

N ×M × dlog2(L)e bits are required to store the population. One chromosome corresponds to one
word in BRAM. Examples of BRAM size considerations are shown in Figure 5.

7



Figure 5: Examples with BRAM (note that Overlaps in the examples shown refers to the
IntersectingPairs vector described in this report)

7.3 Mutation

Mutation will alter the genes in a chromosome from their initial states. Note that since we are
dealing with indices, we can prepare the mutation phase in parallel with fitness value calculations.

Mutation will occur on an individual with probability mutpb and will vary each gene of a
chromosome with probability indpb. If a gene is chosen to be mutated, it will happen uniformly
over the choice of valid layers. For example, if N LAYERS = 3, then the mutation can set a single
gene to be 0, 1, or 2. In our framework, the number of layers is fixed to be 8, so valid gene values
are integers between 0 and 7.

7.3.1 Prepare Mutation

Generate an 8-bit random number, mut rn, which is used to decide whether a chromosome will
be mutated Create a vector, ind rn, containing nchromosomes randomly generated 8-bit numbers
Create a vector, layer rn, containing nchromosomes randomly generated numbers between 0 and
N LAYERS-1.

7.3.2 Microarchitecture: Mutation.bsv

interface SettableMutate;

interface BRAMClient#(Bit#(LOG_MAX_POP_SIZE), Chromosome) bram;

interface Put#(UInt#(LOG_MAX_POP_SIZE)) setPopulationSize;

interface Put#(Bit#(RAND_SIZE)) setIndividualMutationProb;

interface Put#(Bit#(RAND_SIZE)) setGeneMutationProb;

method Action start;

8



method Bool finished;

endinterface

7.3.3 Perform Mutation

For each chromosome in the population (population bram), get random numbers from preparing
mutation (prep mutate.getRNs) where PrepareMutate prep mutate <- mkPrepareMutate.

If the mut rn is less than mut pb, (mut pb is the threshold created by the user-inputted mutation
probability value), then the chromosome will be mutated. Otherwise, we set the value of the mu-
tated chromosome, mut chromosome, to be the same as the original chromosome If the chromosome
will be mutated, we go through each of the nchromosomes indices in ind rn, and for each index i:
if ind rn[i] is less than ind pb, (ind pb is the threshold created by the user-inputted individual
mutation probability value) then we set the ith entry of the mutated chromosome, mut chromosome,
to be the randomly generated layer specified by layer rn[i]. Otherwise, we set the ith entry of
mut chromosome to be the preexisting entry at the ith location of the chromosome, chromosome[i].

Store the mutated chromosome in the population at the same location as the original chromo-
some.

7.4 Crossover Phase

We found that while crossover is generally useful in creating additional diversity in the population,
crossover is not very useful in this problem structure because it nearly always creates chromosomes
with much lower fitnesses. In the software (Java) implementation, we have omitted crossover as
well. That being said, we still provide an explanation and partial implementation of the crossover
module below.

In the crossover phase, we randomly select chromosome pairs from the new population (post-
selection) to crossover. Since we have N chromosomes in the population both before and after
crossover, we will prepare crossover by selecting pairs of chromosome index values, since the pop-
ulation will change after selection but we can still access chromosome values using the index of a
chromosome in the population.

7.4.1 Prepare Crossover

Choose pairs of elements specifying chromosomes in a population of size N (pairs will be chromo-
some index values from 1 to N).

This can be done in N
2 parallel processes where, for a pair of chromosome index values (specified

by 2× dlog2(N)e bits since each pair consists of 2 chromosome index values from the population.
We generate a random integer, and if it is above the crossover threshold, then we add the pair

of chromIndex values to a FIFO vector containing the pairs for crossover.
We perform one-point crossover, so a random point is specified to indicate the starting point

in the chromosome at which genes in the chromosomes are swapped. Along with the chromosome
index values, we also include the gene index within the chromosome where crossover begins in the
FIFO.

Note that the FIFO will have a length ≤ N
2 , and the FIFO stores vectors of length 3 that use

log2(N) bits for the first two vector entries (the index values for the chromosome index values that
will crossover, where each chromosome index (chromIndex) uses log2(N) bits), and log2(M) bits for
the third entry, which denotes the gene index within the chromosomes to begin the crossover.

9



Note that because we perform crossover after selection, if chromIndex is i, this corresponds to
the chromosome located at the i-th index of the selection output vector.

7.4.2 Perform Crossover

To perform crossover, we use entries from the FIFO from prepare crossover (an entry contains two
ChromIndex vals and a GeneIndex), take the two chromosomes specified by the ChromIndex values
in the population after selection and swap their genes starting from the GeneIndex location, all the
way to the end of the chromosome.

7.5 Fitness

Fitness will be determined as the sum of crossings on each layer. Given a set connections (line
segments), this requires running a line intersection algorithm between all pairs of lines to determine
if each cross. Since the line segments do not change location, only layers, we can precompute the
crossings for every line intersection and store them as a list of intersecting pairs. This process is
done in software prior to FPGA initialization, then passed into HW via indication.

Then, we can just check if the two intersecting lines are on the same layer. If yes, then a crossing
has occurred. If no, then no crossing has occurred because the lines are on separate layers. For the
example in Figure 1, the associated intersecting pairs vector and chromosome are provided below
in Figure 6.

Figure 6: Intersecting pairs & chromosome representation of the problem

For this example, we go through each of the intersecting pairs, checking if the layer information
for these two lines (which is stored in the chromosome) is equal. The only intersection happens
to occur for the pair < L3, L6 >, which shows both lines on the red layer. If L6 was instead on
the yellow layer, there would have been zero intersections for this design, and therefore the fitness
would have been a perfect zero.

7.5.1 Microarchitecture: Fitness.bsv

interface SettableFitness;

interface BRAMClient#(Bit#(LOG_MAX_POP_SIZE), Chromosome) bram;

interface Put#(UInt#(LOG_MAX_POP_SIZE)) setPopulationSize;

interface Put#(IntersectingPairsVec) setIntersectingPairsVec;

method Action process; // begin processing the fitness values

method Bool is_finished;

method ActionValue#(FitnessVec) getFitnesses;

endinterface

interface FitnessOneIndividual;

10



method Action start(Chromosome chromosome, IntersectingPairsVec intersectingpairs);

method UInt#(32) getFitness;

endinterface

7.5.2 Constraints

Before proceeding to the selection phase, a fitness value for every chromosome j in the population
of size N in generation k must be calculated, as the selection phase must have access to the fitness
values of all chromosomes in the population.

7.5.3 Hardware Design

(a) For each chromosome j in the population of size N , the fitness value can be calculated in
parallel. In our implementation, we instead iterate through each chromosome to reduce
hardware requirements.

(b) Once all N fitness values are calculated (one for each chromosome), the calculations in the
fitness phase are complete

7.5.4 Output

The fitness phase will produce a vector of length N containing fitness values for each chromosome.
The jth entry represents the fitness value of chromosome j and takes up a bits, where a is the
number of bits required to specify a level of the PCB design. In our examples, a = 8 bits (allowing
for 256 levels)

For generation k, the fitness phase output required to proceed to the selection phase is below.

Yk =


y1k
y2k

...
yNk


7.5.5 Bits required

For a generation k, this requires N × b bits, where N is the population size and b is the number of
bits required to express the fitness value for a chromosome j in the population.

We specify the fitness value by the number of intersections (line crosses) in a particular design.

Since we have a total of M lines and the maximum number of intersections is M(M−1)
2 , b must be

large enough to express this maximum number of intersections.

b = log2(
M(M−1)

2 ) bits required to express the fitness value for a chromosome j in the population.

7.6 Selection

In order to select new individuals for our updated population, we implement two modules, Selection
and SelectBest. Selection provides a tournament-based approach which produces N individuals,
while SelectBest is a simple module which returns the best individual in the population. The second

11



module is used at the very end of the GenOpt process to find the best design, which is then output
to software via indication.

7.6.1 Tournament Selection

To inject randomness into the selection process, GenOpt libraries often default to using tournament
selection N times (where N is the number of individuals in a population) with a fixed tournament
size k. This entails selecting k individuals at random, then selecting the individual with the highest
fitness. This process occurs N times. We perform N tournaments of size T (T= tournament size)
for the selection phase.

7.6.2 Prepare Tournaments

We can run Prepare Tournments in parallel for each of the N tournaments to create a vector v of
length T , where each vector entry is a value between 1 and M (M=number of genes in chromosome).

U =


u1
u2
...

uN


Each tournament is prepared by randomly generating T values to between 1 and M (number of

genes in chromosome) to create a T -length vector containing chromIndex values. These values spec-
ify the chromosomes included in each tournament. We can prepare the tournaments independently,
so we could have N parallel processes that create vectors taking up T × log2(M) bits.

The output of Prepare Tournaments is U, which contains N of these tournament vectors
(each tournament vector denoted as ui), requiring a total of N ×T × log2(M) bits. Note that each
tournament vector ui requires T × log2(M) bits.

7.6.3 Selection (Perform Tournaments)

Once we have U, we can perform the ith tournament, ui if

• for the ith tournament, the fitness values for the T chromosomes included in tournament ui
have been calculated

We can perform the tournaments independently. There will be N separate tournaments, in
which the chromosome with the best fitness value will be chosen for each tournament.

7.6.4 Bits required (storing in BRAM)

N ×M × dlog2(L)e bits are required to store the population. One chromosome corresponds to one
word in BRAM. Examples of BRAM size considerations are shown in Figure 5.

7.6.5 Updating the population

The selection phase will request chromosomes from the population BRAM and then store them
to the selection BRAM (same size as popuation BRAM) as the tournaments are performed. The
winning chromosome id (chromosome id with the best fitness) of tournament i will be requested

12



from the population bram, and once it is received, the chromosome value will be inserted into the
selection bram at location i.

Once all tournaments are completed and the selection bram has been updated with all chro-
mosomes in the new population (winning chromosomes from each of the N tournaments), BRAM
requests to write to the population BRAM will be sent from the Selection module. The chromosome
at location j in selection bram will be written to location j in the population bram, overwriting
the population contents once selection is complete.

7.6.6 Bits required

For a generation k, V requires N×dlog2(N)e bits, where N is the population size and log2(N) is the
number of bits required to express the index of a chromosome in Xk (Xk contains N chromosomes).

7.6.7 Microarchitecture: Selection.bsv

interface SettableSelection;

interface BRAMClient#(Bit#(LOG_MAX_POP_SIZE), Chromosome) bram;

interface Put#(UInt#(LOG_MAX_POP_SIZE)) setPopulationSize;

interface Put#(Bit#(LOG_MAX_POP_SIZE)) setTournamentSize;

method Action start(FitnessVec x);

method Bool finished;

endinterface

interface SelectBest;

interface BRAMClient#(Bit#(LOG_MAX_POP_SIZE), Chromosome) bram;

interface Put#(UInt#(LOG_MAX_POP_SIZE)) setPopulationSize;

method Action start(FitnessVec x);

method ActionValue#(Chromosome) getbestInd();

method Bool finished;

endinterface

7.7 Stopping Condition

If the current generation k is equal to the number of generations specified, K, we proceed to
the SelectBest module. Otherwise, proceed with another generation, incrementing the current
generation by 1.

When selecting the best chromosome in the population, the SelectBest module loads the fitnesses
vector and outputs the chromosome at the population bram address location being the index value
of the minimum-valued entry in fitnesses (i.e. the chromosome with the best fitness score).

This chromosome is our output. The vector output of length nchromosomes denotes the layers
of the pcb board for each line segment. I.e. the ith entry of the vector output specifies the layer of
the PCB to place the ith input line segment on.

7.7.1 Connectal Outputs

Once the population has converged (determined by a stopping condition), the genetic algorithm
terminates and the best chromosome from selection will be the output sent to connectal.

We will call this best chromosome opt levels, which is a vector of length k contains the optimal
z coordinates for each of the k line segments given that there are N levels on the PCB.

13



opt levels =
[
z1, z2, . . . zk

]
The ith entry of opt levels, zi, denotes the optimal level chosen for the ith input line segment.

Note that zi is an integer such that 1 ≤ zi ≤ N .
Once the genetic optimization pipeline is finished, entries from the otuput vector are sent to

connectal, which then writes the contents to the binary file out.positions and closes the file,
terminating, when the number of entries received is equal to the number of line segments to place
on the PCB.

7.8 Design Verification and Testing

For the line intersection algorithm, we will have a set of unit tests to ensure proper operation. As for
the entire module, since the algorithm is non-deterministic, we will compare its operation to a pre-
existing known-working software implementation written in Python using Distributed Evolutionary
Algorithms in Python (DEAP). We also have unit test cases for the modules within the Genetic
Optimizer pipeline, which we use to test modules on an individual level.

8 Implementation Evaluation, Performance

Our genetic optimization source code is located at github repo.

8.1 Running the simulation

To run the software with user-specified arguments once the project is initially built, we can do so
with the following command (in this example, running simulation):

connectal$ NGENS=10 POPSIZE=80 TOURNSIZE=10 CXPB=0 INDPB=0.4 MUTPB=0.02 make run_simulation

In this case, the number of generations is specified to be 10, the population size is 80, the
tournament size is 10, the crossover probability is 0 (this module does not get called in our im-
plementation since mutation has been observed to help with convergence the most in software
examples and we decided to focus on the other modules of the genetic optimization process), the
individual mutation probability is 0.4, and the gene mutation probability is 0.02. For this example,
100 lines were specified to be placed on an 8-layer board, with a total of 50 intersecting pairs for
the 100 line segments specified in intersecting-pairs.bin (see Figure 7 for file contents).

Contents of the output file produced by running the simulation for this example are shown in
Figure 8.

8.2 Running on the FPGA

To run our program with user-specified hyperparameters on the FPGA, we can run following
command:

connectal$ NGENS=10 POPSIZE=80 TOURNSIZE=10 CXPB=0 INDPB=0.4 MUTPB=0.2 make run_fpga

14

https://github.com/DEAP/deap
https://github.com/DEAP/deap
https://github.mit.edu/hberlin/6.375-final-project/tree/master/code/genopt


Figure 7: intersecting-pairs.bin file contents for the FPGA experiment outlined. 50
pairs of line segments which overlap if placed on the same PCB layer are stored in this file.
A total of 100 line segments are used in this experiment.

Figure 8: Simulation output when running connectal$ NGENS=10 POPSIZE=80

TOURNSIZE=10 CXPB=0 INDPB=0.4 MUTPB=0.2 make run simulation

The hyperparameters can be modified by the user, but results for this run are shown be-
low. For this example, a total of 50 intersecting pairs for the 100 line segments are specified in
intersecting-pairs.bin (see Figure 7 for file contents).

When running the program on the FPGA, the output is the binary file out.positions, which
denotes the layer assignments for the 100 layers on the PCB. The hexdumped contents of the output
file for the experiment described indicating the layer assignments for each of the 100 line segments
on the PCB are shown in Figure 9.

Figure 9: FPGA output when running connectal$ NGENS=10 POPSIZE=80 TOURNSIZE=10

CXPB=0 INDPB=0.4 MUTPB=0.2 make run fpga

15



8.3 FPGA Performance

Our design (containing 100 line segments, 8 layers on the PCB) builds on the FPGA and meets
the timing conditions when the main clock period is set to 17ns, which meets our design require-
ments. The limiting factor in performance is the amount of information stored in BRAM, which is
determined by the number of line segments to place on the PCB and the size of the population.

Looking at top-post-route-utils-summary.txt, in our entire design (mkPcieTop), the total
number of LUTs used is 36897 (12.15%), the total number of FFs is 45716 (7.53%), and the design
uses 0 DSP48 blocks.

8.3.1 Critical Path

To find the critical path, we built our program on the FPGA with clock period of 8, which was
chosen to use a main clock period that’s much smaller than what the current clock minus the slack
was, since prior to doing this, Vivado could not find a global optimal so that every clock domain
meets the timing requirements and the violated path was in the clock domain, so we didn’t gain
insight on the critical path for our specific program. Building the program on the FPGA with a
main clock period of 8ns, we found our critical path, which is shown in the partial output from
top-post-route-timing-summary.txt in Figure 10.

Figure 10: partial output from top-post-route-timing-summary.txt when building on an
FPGA with a small main clock period of 8ns

This result showed that our critical path was when we write data from BRAM to the outFIFO,
showing that this is an area for us to explore implementing design variations to cut the path and
get the program to build on an FPGA with a faster clock.

8.3.2 Comparing performance with software results

For 100 connections, 50 intersecting pairs, a population size of 100 and 100 generations, the FPGA
implementation ran in 28009 cycles * (17 ns per cycle) = 4.8× 10−4 sec.

The software implementation, ran on a CPU (Single Core), took 1.99 sec for the same experi-
ment.

Our FPGA implementation shows a 4000x speed improvement with the fitnesses essentially
equal, showing that our FPGA implementation ran running quickly and produced a valid result on
par with the result produced by the software implementation, validating our design.

16


	Acknowledgements
	Problem Statement
	Background
	Benefits of modeling on an FPGA
	FPGA Inputs
	Loading intersecting pairs
	Creation of the intersecting pairs binary file, intersecting-pairs.bin


	High-level design
	Common Params
	GenOptTypes.bsv


	Genetic Optimization Pipeline
	GeneticOptPipeline.bsv
	Initialization
	Initializing the population
	Bits required (storing in BRAM)

	Mutation
	Prepare Mutation
	Microarchitecture: Mutation.bsv
	Perform Mutation

	Crossover Phase
	Prepare Crossover
	Perform Crossover

	Fitness
	Microarchitecture: Fitness.bsv
	Constraints
	Hardware Design
	Output
	Bits required

	Selection
	Tournament Selection
	Prepare Tournaments
	Selection (Perform Tournaments)
	Bits required (storing in BRAM)
	Updating the population
	Bits required
	Microarchitecture: Selection.bsv

	Stopping Condition
	Connectal Outputs

	Design Verification and Testing

	Implementation Evaluation, Performance
	Running the simulation
	Running on the FPGA
	FPGA Performance
	Critical Path
	Comparing performance with software results



