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1 Introduction and Application
For any autonomous system it is essential to accurately and quickly perceive and measure distances to potential obstacles. Several
techniques have been proposed to perform this task, with varying degrees of complexity, accuracy, cost and area coverage. Amongst
them, one of the most simple, yet promising, approaches is the use of stereo vision [1].

Stereo vision can infer the depth of objects (such as the distance to an identified obstacle in the case of a self driving car) using images
from two cameras a known distance apart. Given the position of the same object in the two images (one coming from each camera)
one can determine the 3-D coordinates for the given point using simple geometrical considerations.

In this project, we want to implement a stereo vision algorithm in an FPGA that will be used by the MIT Driverless Racecar team.
This team competes in the autonomous formula student series, where the car has to follow a path which is marked by cones. Cones
are detected via a neural network and stereo vision is used to determine the positions of the detected cones, so that the car can correct
its direction if necessary. The image pairs in figure 1 show a sample input for the stereo vision system taken by the racecar.

Figure 1: Sample stereo images taken by the MIT Driverless Racecar. The red points on the left image represent the coordinates of the
points for which we want to compute real-world position coordinates using the stereo vision algorithm.

2 Project Objectives
As mentioned above, the goal of this project is to implement a fast stereo vision system to be used by the MIT Driverless Racecar team.

Since the latency with which we compute a safe path for the car to follow determines the maximum speed at which it can drive, the
most relevant metric for our system is its latency. There are 15 ms allocated for the stereo vision algorithm, and therefore we want to
synthesize an FPGA that reaches this target.

Therefore, we require that the FPGA be capable of computing real-world distances on 20 points from 800x320 pixel images at 60fps
with less than 15ms latency. We do not have a required clock speed so long as the throughput and latency goals are met.

2.1 Assumptions
a. We will assume that the target points (red dots in Fig. 1) are an input to the stereo vision system. This is true in the case of the

MIT racecar, since the target points are computed using a neural network.
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b. We will assume that the two stereo images are rectified, which means that any distortion or misalignment between the two
cameras has been corrected for. CPU implementations for image rectification are already very efficient, so implementing these
on an FPGA might not give a big advantage.

3 Stereo Vision Basics
As briefly mentioned above, stereo vision can infer the depth of objects (such as the distance to an identified obstacle in the case of
a self driving car) using only two images from two different cameras sitting a known distance apart. Given the position of the same
object in the two images one can determine the 3-D coordinates for the given point using simple geometrical considerations.

Efficient stereo vision algorithms use rectification, in which the images are corrected for non-linear features such as distortion or
misalignments between the pair of cameras. Given two rectified images, a pixel from one image corresponds to another pixel on the
epipolar line in the other image. These two corresponding pixels represent the same position in 3-D space. Specifically, given two
images from cameras with only horizontal displacement, both pixel-space coordinates will share the same vertical coordinate and will
thus be on the same horizontal line (see Fig. 3).

Figure 2: Stereo vision geometrical depiction [3]. Given the position of the same object in two images taken from two different
cameras horizontally displaced, the 3D position of the object can be inferred.

Different algorithms exist to match the points in one image to the other. The most usual one is called Sum of Absolute Differences
(SAD), and it consists in computing the sum of the absolute value of the pixel by pixel difference of a block of BxB pixels around
the pixel of interest. Let pl(x, y) and pr(x, y) correspond to the pixel at location (x, y) in the left and right images, respectively. Then, :

SAD(x, y) =

a=B/2∑
a=−B/2

b=B/2∑
b=−B/2

|pr(x+ a, y + b)− pl(x+ a, y + b)| (1)

The position (x,y) with the lowest SAD score is considered the point that matches the object in the other image. For example, if we
are trying to match the pixel in position (xleft, y) in the left image, the corresponding pixel in the right image will be located at:

xr = arg min
i=0...S

(SAD(xl + i, y)) (2)
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Once the matching coordinates are found, we can calculate the 3D position in the real-world for any given point using the following
equations [2]:

X = xl
T

(xl − xr) ∗ p
(3)

Y = y
T

(xl − xr) ∗ p
(4)

Z = f
T

(xl − xr) ∗ p
(5)

In the above equations, T is the distance between the two cameras, f is the focal length, xl and xr are the horizontal pixel coordinates
from the left and right images, respectively, y is the vertical pixel coordinate in both images, and p is the pixel pitch (the distance
between two neighboring pixels in the camera).

Figure 3: Sample pair of rectified, stereo images. For the Image Point identified on the left, the corresponding search area is shown on
the right.

3.1 Definitions and Terminology
For the sake of clarity, it is of interest to define the terminology that will be used through the rest of this report. These terms are
depicted in Fig. 3.

• Reference Image: This is the image where the target points are computed. In our case, this will be the left image.
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• Compare Image: Image where the target points have to be found to compute the real-world position coordinates. In our case,
this will be the right image.

• Image Point: These are the coordinates (x,y) specifying the upper left of the block on the reference image that has to be found
in the compare image.

• Search area: This is the area (in pixels) around the image point coordinates where the reference block is looked for in the
compare image. The search area is S pixels wide by B pixels tall, starting at the Image Point and going left (see Eq. 2).

• An image block is BxB pixels (see Eq. 1).

4 High Level Design
Figure 4 shows the high level design of our system. The communication between the host processor and the FPGA will is established
through connectal.

The input to the FPGA consists in:

• A pair of stereo images taken from the two cameras in the car. These are RGB images in bitmap format, each of size 800x320
pixels.

• A list of coordinates (x,y) specifying the center of the image blocks whose distance to the cameras we want to compute.

Additional design variables for our design are the block size in pixels (B), the search area (S), and the number of points to compute in
parallel (N). These parameters are hard-coded in the hardware implementation.

The high level process for our stereo vision system is depicted in Fig. 5. For every new pair of images taken by the car, the stereo
vision performs the following steps:

a. First of all, the two 320x800 pixel images are loaded into the FPGA’s DRAM memory using the interface method loadDRAM().
Images are written to memory in row-major RGBA format, with every pixel represented by 32 bits (8 bits for each R, G, B and
A). The left image is stored starting at address 0, and the right image starts at location 16384.

Figure 4: The stereo vision system setup.
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Figure 5: The high level process followed by the stereo vision system. First, the images are loaded into the FPGA memory. Then, the
interest points are requested. After the FPGA finishes the computations, it returns the real world coordinates to the host.

b. Once the images have been loaded, we send a list of the image point coordinates of which we want to compute the position in
3D space. This points are sent as a list to the FPGA.

c. Once the FPGA has received the image points, it starts the computation of the real world distances right away.

d. Once the real world distances have been computed, the FPGA returns the computed distances back to the host CPU.

Once a pair of images has been processed, we start the process again with a new pair of images, which are loaded in the same addresses
where the old ones where stored.

5 Test Plan
We have implemented the stereo vision algorithm in software, both in Matlab and C++. This way, we can compare the output of our
hardware implementation to the (correct) software output.

We will use real images taken by the MIT Driverless Racecar as inputs to our stereo vision implementation.
In addition, we wrote unit test cases for all modules to validate functional correctness. These tests cases enabled identification of bugs
before they propegated throuhg the latter components.

6 Microarchitectural description
Our microarchitectural design consists of a pipelined design for Image Point. This pipelined design is then replicated to compute real-
world coordinates for N pixel-coordinate points in parallel. The pipelined design for processing an Image Point consists of multiple
components: two LoadBlocks instances, a ComputeScore block, one UpdateScore block, and one ComputeRealWorldDistance block.
In addition, we added a DDR3ReaderWrapper to the DRAM interface to tag read requests responses with the address being requested.

6.1 DDR3ReaderWrapper
typedef Bit#(26) DDR3_Addr;
typedef Bit#(512) DDR3_Line;

typedef struct {
Bool write;
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Figure 6: Microarchitecture schematic. A pipelined microarchitecture is chosen. N image points are computed in parallel.

DDR3_Addr line_addr;
DDR3_Line data_in;

} DDR3_LineReq deriving (Bits, Eq, FShow);

typedef struct {
DDR3_Addr addr;
DDR3_Line data;

} DDR3_LineRes deriving (Bits, Eq, FShow);

interface DDR3ReaderWrapper;
interface Put#(DDR3_LineReq) request;
method Maybe#(DDR3_LineRes) get;

endinterface

This block tags all READ requests to FPGA memory with the address being requested. It is implemented with a large FIFO that records
the addresses being requested from FPGA memory. When FPGA memory responds to a memory request, this module dequeues from
its FIFO and tags the response with the appropriate address. All READ memory requests are routed through this block, and there
is only one instance of it in our entire system. This block enables our system to request from memory from multiple, independent
modules without needing to implement a global ordering for memory requests. Without this block or a global ordering, it would not
be possible to correlate memory read requests with responses.

6.2 LoadBlocks
typedef struct {
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UInt#(pb) x;
UInt#(pb) y;

} XYPoint#(...) deriving(Bits, Eq);

typedef Server#(
XYPoint#(pb),
Vector#(TMul#(npixelst, npixelst), Pixel#(pd, pixelWidth))

) LoadBlocks#(...);

The LoadBlocks module loads the pixels for a given block from main memory. Each block is a 5x5 region of pixels. The LoadBlocks
module is implemented circularly. For each point in the block being requested, it computes the DRAM address where the point is
stored and sends a request for that address through DDR3ReaderWrapper. Because the DRAM module is serial, we used a circular
implementation to request one memory address per cycle.

In a separate rule, on each cycle, this module calls DDR3ReaderWrapper,get() to retrieve and process fulfilled memory re-
quests. For each memory address, it computes which, if any, pixels to keep, and then loads these desired pixels into registers. Once all
pixels have been returned and loaded, it queues the block of pixels from the block of registers into the response FIFO and dequeues
the original request from the request FIFO.

Note that the underlying DRAM component pipelines memory requests. As such, memory requests and responses may be inter-
leaved but are never fulfilled simultaneously. Even when replicated, LoadBlocks component properly handles interleaving of memory
requests and responses.

6.3 ComputeScore
typedef struct {

Vector#(TMul#(npixelst, npixelst), Pixel#(pd, pixelWidth)) refBlock;
Vector#(TMul#(npixelst, npixelst), Pixel#(pd, pixelWidth)) compBlock;

} BlockPair#(...) deriving(Bits, Eq);

typedef UInt#(TAdd#(pixelWidth, TLog#(TMul#(TMul#(npixelst, npixelst), pd))))
ScoreT#(numeric type npixelst, numeric type pd, numeric type pixelWidth);

typedef Server#(
BlockPair#(npixelst, pd, pixelWidth),
ScoreT#(npixelst, pd, pixelWidth)

) ComputeScore#(...);

The ComputeScore module compares two blocks – one from the reference image, and one from the comparison image – and computes
the sum of absolute difference (SAD) in color between these blocks. We refer to this ”difference” as score, and a lower score implies
a closer match.

6.4 UpdateScore
typedef struct {

ScoreT#(npixelst, pd, pixelWidth) score;
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UInt#(pb) distance;
} ScoreDistanceT#(...) deriving(Bits, Eq);

typedef Server#(
ScoreDistanceT#(pb, npixelst, pd, pixelWidth),
UInt#(pb)

) UpdateScore#(...);

The UpdateScore module records the disparity for the best, or lowest, SAD score computed thus far for the current image point. It
uses registers to record the best disparity and corresponding score, which is updated at the beginning of loading a new Image Point or
a better score is found for the current Image Point.

6.5 ComputeDistance
typedef struct {

UInt#(pb) x;
UInt#(pb) y;

} XYPoint#(...) deriving(Bits, Eq);

typedef struct {
XYPoint#(pb) point;
UInt#(pb) distance;

} XYPointDistance#(...) deriving(Bits, Eq);

typedef Server#(
XYPointDistance#(pb), // pixel x, pixel y, and disparity (distance)
Vector#(3, FixedPoint#(fpbi, fpbf)) // real-world x, y, and z

) ComputeDistance#(...);

The ComputeDistance module computes the real-world distance for an Image Point given the best disparity. Upon compilation, it
precomputes a lookup table for T

d∗p for each possible d, where T is the distance between the camera lenses and p is the pixel pitch. T
and p camera-specific constants. This precomputation enables calculation of the real-world distance via fixed-point multiplication, not
division, which significantly shortens the critical path.

6.6 StereoVisionSinglePoint
typedef struct {

UInt#(pb) x;
UInt#(pb) y;

} XYPoint#(...) deriving(Bits, Eq);

typedef Server#(
XYPoint#(pb),
Vector#(3, FixedPoint#(fpbi, fpbf))
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) StereoVisionSinglePoint#(...);

Each StereoVisionSinglePoint module contains two LoadBlocks modules, and one ComputeScore block, one UpdateScore block, and
one ComputeDistanece block.

One of the LoadBlocks modules is initialized for the reference image, and the other is initialized for the comparison image. When
first processing an Image Point, the reference image LoadBlocks module is invoked, and the pixels for the reference block are stored
in registers. After loading the reference block, the module pipelines the processing of each block within the search range. At the
beginning of each iteration, the LoadBlocks module for the comparison image fetches the appropriate block from memory; then this
block and the pre-loaded reference block are passed into the ComputeScore Block. The result from ComputeScore and the disparity,
which is the same as the iteration count, is passed into UpdateScore. Once the pipeline completes, the best disparity and the original
Image Point are passed into ComputeDistance to calculate and return real-world coordinates.

6.7 StereoVisionMultiplePoints
typedef struct {

UInt#(pb) x;
UInt#(pb) y;

} XYPoint#(...) deriving(Bits, Eq);

typedef Server#(
Vector#(n, XYPoint#(pb)),
Vector#(n, Vector#(3, FixedPoint#(fpbi, fpbf)))

) StereoVisionMultiplePoints#(...);

The one StereoVisionMultiplePoints module contains copies of StereoVisionSinglePoint so that multiple points can be computed
in parallel. Its request and response interfaces proxy individual points and real-world distances, respectively, to each replica of
StereoVisionSinglePoint. This interface is used by Connectal.

7 Implementation Challenges
The most challenging part to implement was the interface with the DDR3 memory. We have multiple stereo vision modules working in
parallel, all issuing requests to the same memory, so we had to implement a ’scheduler’ that would correctly manage all these parallel
requests. We also had to modify the interface to the memory to return not only the information stored in the requested address, but also
the address itself. This way, each stereo vision module is able to identify if the information being returned by the memory is of interest.

Another challenging issue with the DDR3 implementation was the endianness. The host processor uses the opposite endianness of the
FPGA, and therefore when loading the images into the DRAM we need to make sure that this is accounted for.

Finally, we also came up with several issues when implementing the communication between the host processor and the FPGA. Since
both the returnOutput() and the requestPoints() connectal methods send lists of values between the FPGA and the host (the former
sends a list of real world coordinates and the latter a list of image point coordinates to be processed), we had to figure out a way to
send these lists through tte PCIE link using connectal. We first tried using structs, but we later settled in the use of vectors as they were
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more flexible.

Table 1 shows the lines of code for each of the modules we implemented in bluespec.

Module Lines of code

Types definitions 97
ComputeScore 77

ComputeDistance 52
LoadBlocks 145
UpdateScore 51

StereoVisionSinglePoint 190
StereoVisionMultiplePoints 71

Connectal Interface (MyDut) 246
Total 929

Table 1: Lines of code used to implement the different Bluespec modules.

8 Design Exploration

8.1 Precomputation of Division
Our first FPGA design had a critical path of 59 nanoseconds. This critical path originated from division required by the Stereo Vision
formula 3. Fixed point division is an extremely expensive operation, for it is an iterative process. Upon further inspection, we realized
that the maximum number of possible divisors was the size of the search area (S) plus the block size (B), totaling 55 (pixels). As such,
our first design change was precomputing all 55 possible values and results in a lookup table. During runtime, we now only need fixed
point addition, subtraction, and multiplication. These changes enabled us to reduce our clock period down to 21 nanoseconds.

8.2 Parameter Tuning
With a sufficiently fast clock speed, we then modified our design the number of image points (N) being computed in parallel. Increase
the number of points computed that the FPGA can process in parallel would directly increase throughput. However, every addi-
tional StereoVisionSinglePoint module requires additional hardware resources, Build-times complexity increase because of
the additional routing and layout constraints. Table 2 illustrates how hardware and performance metrics change as the number of
StereoVisionSinglePoint modules increase.

Note that the cycle counts and latency measurements depend on DRAM access delays and vary between runs. The standard deviation
for these measurements is less than 5%.

There is no significant difference in latency with these different architectures. The lower hardware utilization of the two-point approach
results in significantly faster build times.

In addition, it is also possible to vary the size of the search area or the size of a comparison block through Bluespec static elaboration.
Varying such parameters would be trivial, for they only affect the number of iterations (cycles) needed to loop over the search area or
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N LUTs LUTs (% of total available) Cycle Count (excluding image loading) Latency (ms) (excluding memory loading)
2 77852 25.64% 5876 0.000233
4 1211152 39.91% 7158 0.000222
10 256446 84.47% 4756 0.000243

Table 2: The effect of varying the number of parallel stereo vision modules, N, on circuit parameters and performance metrics. Cycle
counts and latency were measured on the same image with 7 Image Points. This image required 4, 2, and 1 pass, respectively, on N=2,
4, and 10 points in parallel.

a block. They do not materially affect the amount of hardware resources required.

8.3 ROS Integration
In addition to being able to process images stored in files on the local disk, we integrated the FPGA (through connectal) with the
Robotics Operating System (ROS). ROS is a publisher-subscriber framework designed for robotics applications. The stereo vision
camera on the MIT Driverless Racecar, along with the neural network which identifies the points of interest, publish this information
through ROS messages. We dynamically linked the ROS C++ sdk to connectal interface. Thus, stereo image pairs and points for
processing can be sent directly to the FPGA without having to read from and write to disk.

9 Performance Evaluation

9.1 Correctness
As stated in section 5, it is straightforward for us to evaluate the correctness of our implementation by comparing it to the outputs gen-
erated by the pure software implementations we did in Matlab and C++. By doing this, we confirmed that our FPGA implementation
produces the correct results (subject to the precision of the fixed point multiplication).

Figure 7 shows an example test case. The red dots in the reference image (the left image) are the input points to the fpga, and the blue
dots in the compare image (the right image) show the locations where the fpga located these points. As is observable, the identified
points in the compare image match the input target points.

Figure 7: An example output generated by the FPGA. The red dots in the reference image are the input points, and the blue dots in the
compare image are the matching points computed by the FPGA.
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9.2 Area
With N=2 StereoVisionSinglePointmodules in parallel, that is, computing 2 target points in parallel, the total LUT utilization
is 25.64%.

9.3 Speed/Latency
Our design runs with a 21 ns clock period, which corresponds to a frequency of 47.7 MHz. The critical path is in the LoadBlock
module, and is set by the interface to the DDR3 memory.

We also recorded the time it takes the FPGA to complete a full computation cycle (loading the two images to the FPGA, requesting
the points and receiving the points back). The total time for this process to complete is 141 ms. Of these, 140 ms correspond to the
time needed to load the two images into the DRAM (70 ms per image). Once the images are loaded, requesting the target points and
getting the computed distances back takes less than 1 ms.

Since in a real system we would not need to copy the images into the FPGA DRAM, but instead we would use Direct Memory Acess
(DMA) techniques, the 140 ms taken to load the images into memory (which represents 99.3% of the time taken by our test imple-
mentation) does not have to be accounted for. Therefore, the latency of our implementation is <1 ms, which fulfils our goal of less
than 15ms latency by more than one order of magnitude.

10 Conclusion
We have successfully implemented a stereo vision system in an FPGA. By instantiating several modules that perform the stereo vision
algorithm on a single point, we can compute multiple points in parallel, speeding up the computation. The time taken by the FPGA to
receive the target points, compute the real world coordinates and return them is only 1 ms, which beats by more than 10x our goal of
15 ms latency. Our test demonstration was limited by the long time (≈140 ms) it takes for the two stereo images to be loaded into the
FPGA’s DRAM, something that would not be necessary in a real stereo vision system implementation.
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