
1

6.375 Complex Digital Systems

Francis Wang, Shana Mathew

Multi-tiered branch predictor for pipelined processors

Background
In processor design, branch predictors are hardware structures that make a prediction on

the direction of branches before the outcome is known for certain. This prevents the

processor from stalling when faced with control hazards. Instructions after the branch are

fetched speculatively. If the prediction is found to be correct, the processor proceeds

without incurring any additional delays. However, if the prediction is found to be incorrect,

the pipeline is flushed and the fetch unit is redirected to the correct address. For modern

out-of-order superscalar processors, the fetch stage is decoupled from the execution units

and there is a large delay between when a branch instruction is fetched and when the

branch is resolved. This makes branch mispredictions very costly and motivates the

development of highly accurate branch predictors.

Some modern processors employ a tiered strategy to branch prediction. There is a

hierarchy of prediction structures where each predictor is slower, larger, and more

accurate than the last. Closest to the fetch stage is the Branch Target Buffer (BTB). The

BTB is very tightly coupled to the fetch stage and it predicts the next address before the

instruction is even fetched from memory. When an instruction is identified as a branch,

the first level branch predictor kicks in and redirects the instruction flow if it believes the

BTB to be in error. As the instruction goes through the pipeline, more sophisticated branch

predictors are consulted and the instruction flow is redirected as is appropriate. These

branch predictors may take several cycles to compute their results but make use of longer

history records or are specialized to recognize certain program behavior such as loops or

function returns. The combination of small and fast predictors and large and slow

predictors allow designers to strike a good compromise between latency and accuracy.

2

Overview

In this project we implement a three-tiered branch predictor structure for a pipelined R32I

RISC-V processor consisting of a BTB and two branch predictors of varying

sophistication. Later predictors can override the decision made by earlier predictors by

flushing the pipeline and redirecting the fetch stage. There are two major components to

this project, the handling of speculative state in the pipeline and the implementation of the

predictors. For the pipeline aspect of this project, we have to ensure that all right path

instructions are executed and all wrong path instructions are squashed. We test the

correctness of the pipeline by running assembly and C benchmarks. The predictors

themselves are verified by comparing trace dumps of the processor with software models

to check that all of the predictions match up with the models. Finally, we present some

results on the effect of table size on predictor accuracy.

High-level Design

We leverage the infrastructure of the processor lab in our project by modifying the three

stage bypass processor. The multi-tiered predictor structure that we propose is only

suitable for deeply pipelined processors. We emulate such a processor by splitting the

decode stage from the execute stage and inserting two additional decode stages. The

simple structure of the pipeline allows us to abstract away features of a more complex

processor such as superscalar fetch or out-of-order execution and focus on the branch

prediction aspects of the design. The two specific branch predictors that we implement

are the Gshare and TAGE predictors. The Gshare predictor is a simple and effective

branch predictor that indexes an array of two-bit saturation counters with a hash of the

branch address and the global branch history [1]. Its straightforward structure makes it a

good candidate for a small and fast predictor that is tightly coupled to the fetch stage. In

our implementation, the Gshare predictor returns its result within a single cycle. The

TAGE predictor is a more sophisticated predictor that makes use of multiple history

lengths and an array of partially tagged tables to capture correlations from both remote

and recent branch history [2]. It is one of the highest performing branch predictors for

which the details are publicly known. Its high accuracy and more complicated prediction

generation logic makes it a suitable candidate for our secondary predictor. In our

3

implementation, the TAGE predictor returns its result in the next clock cycle. A description

of the pipeline stages of our processor is presented in Table 1. Stages that may trigger a

redirection are marked with an asterix.

FE Instruction requested from memory, BTB predicts next PC

D1* Instruction received from memory, simple control flow instructions resolved,
prediction received from Gshare

D2* Prediction received from TAGE

D3 Data fetched from register file, destination register added to scoreboard

EX* Instruction executed, branches resolved, predictors updated, loads and stores
launched

WB Loads received from memory, destination register written to and removed from
scoreboard

Table 1. Description of pipeline stages

Speculative state is managed by a set of three boolean epoch counters, corresponding

to the three stages of the pipeline where a redirection could occur. Each instruction carries

an epoch, and if the epoch does not match that of the epoch counters the instruction is

dropped. When the instruction stream is redirected, the epoch counters are updated,

invalidating all of the younger instructions in the pipeline. When multiple redirections occur

in the same cycle, the redirection furthest down the pipeline takes precedence. In the

execute stage, branches are resolved and the predictors are updated according to their

individual update policies. A diagram of the processor pipeline is presented in Figure 1.

Predictors are aligned vertically with the pipeline stage in which it takes effect.

4

Figure 1. Pipeline diagram with predictors

Now we will discuss the performance benefits of the multi-tiered prediction structure.

Suppose that the prediction generation logic for the TAGE predictor cannot be evaluated

in a single cycle. If we have only the BTB and the TAGE predictor, the prediction penalties

for the different cases are shown in Table 1. The average misprediction penalty is given

by 𝑁"# = 4 − 2𝑃# − 2𝑃#𝑃".

BTB TAGE Penalty

X 0 4

0 1 2

1 1 0

Table 2. Penalty with BTB and TAGE predictor

However, if we insert the Gshare predictor, which is capable of making a prediction

combinationally within a single cycle, we can potentially redirect an incorrect branch one

cycle earlier. The new prediction penalties are shown in Table 2 and the average

misprediction penalty is given by 𝑁")# = 4 − 2𝑃# − 𝑃#𝑃) − 𝑃#𝑃)𝑃". From this we deduce

that the Gshare predictor will reduce the average misprediction penalty if 𝑃) > 2𝑃"	/	(1 +

𝑃"). In other words, the Gshare predictor will be effective as long as it is significantly more

accurate than the BTB.

5

BTB Gshare TAGE Penalty

X X 0 4

X 0 1 2

0 1 1 1

1 1 1 0

Table 3. Penalty with BTB, Gshare, and TAGE predictors

Microarchitectural Description
Pipeline

Speculative state in the pipeline is managed with the help of the PcUnit module. The

PcUnit module holds the PC as well as the three boolean epoch counters. When the

instruction flow is redirected, the relevant epoch counters in PcUnit as well as the PC for

the instruction that is next to be fetched is updated. Ephemeral History Registers (EHRs)

are used to eliminate rule conflicts and allow multiple redirections to occur within the same

cycle. The EHRs are configured such that if multiple redirections occur within the same

cycle, the redirection furthest down the pipeline takes precedence. The effects of the

redirection are felt in the cycle after the redirection takes place. This is accomplished

through the internal rule doRedirect which fires before all other rules in the same cycle.

The interface for the PcUnit module is presented below.

6

Figure 2. Gshare and TAGE branch predictors

Gshare predictor

The Gshare predictor uses an N-bit global history register to keep track of the direction of

the last N branches. It maintains a branch history table (BHT) with 2N 2-bit saturating

counters. The global branch history is XORed with the PC to give the BHT index. In the

execute stage, the counters are incremented if the branch was taken and decremented

otherwise. An illustration of the Gshare predictor is shown in Figure 2 and its interface is

presented below.

TAGE predictor

The TAGE predictor uses a series of M predictor tables, 𝑇2 with 0 ≤ 𝑖 < 𝑀, each indexed

with a different history length. This allows it to capture correlations from distant branches

7

while allocating most of its memory to entries with short history length. Table 𝑇8 is indexed

with only the PC and provides the default predictions. The upper tables are partially

tagged and make use of geometrically increasing history lengths. If a match is found in

multiple tables, the table that uses the longest history length takes precedence. All of the

upper tables have a 3-bit saturating prediction counter and a 2-bit saturating useful

counter. If a branch is matched in multiple tables and the matching table with the longest

history length 𝑇2 makes a correct prediction but the matching table with the next longest

history length 𝑇9 does not, the useful counter in 𝑇2 is incremented. The useful counter

serves as a hint for evictions when new entries are inserted into the table. For a full

description of the update policy of the TAGE predictor, refer to the paper by A. Seznec

[2]. An illustration of the TAGE predictor is shown in Figure 2 and its interface is presented

below. The TAGE_trainData type holds information that is used by the update policy such

as the index of the matching tables 𝑇2 and 𝑇9.

Verification

Pipeline

We verify the correctness of the pipeline by running the processor on assembly and C

benchmarks. The design passes all test cases in the benchmark suite, which gives us

confidence that all wrong path instructions are being squashed and all right path

instructions are being executed. We also inserted instrumentation printouts in the

processor source code to record the state of the pipeline at every cycle. An example of

such a trace dump is shown below. Note the redirection in cycle 5818. By inspecting these

dumps we can verify certain aspects of the operation of the pipeline. For instance, that

redirects take effect in the cycle after it is triggered, or that instructions marked as wrong

path are appropriately discarded.

8

Predictor structures

To verify that our three predictors—BTB, Gshare, and TAGE—are functionally correct,

we wrote software models that mirror the Bluespec implementations. The trace dumps

from the benchmarks are fed into these models. Discrepancies between the trace dump

and the model are flagged as errors. An example of the checker output with simulated

errors is shown below.

9

Implementation Evaluation

Utilization

We compile our design for the Virtex-7 FPGA. The total LUT utilization of the design is

31.54%. However, most of this is consumed by the PCIe and DDR3 interface logic. The

total LUT utilization of the processor is 7.33%, an 80% increase over the initial three stage

bypass design. A breakdown of the processor resource utilization is given in Table 4.

Resource Utilization

Total LUTs 22255 (7.33%)

Logic LUTs 22253 (7.33%)

LUTRAMs 2 (0.01%)

FFs 18546 (3.05%)

RAMB36 14 (1.36%)

RAMB18 6 (0.29%)

Table 4. Processor resource utilization

Timing

The timing report for the FPGA implementation is shown below. The critical path seems

to be within the DDR3 interface logic. It only has a logical depth of 2, with 97.7% of the

delay coming from the routing. The Yosys synthesis report indicates that the critical path

within the processor is from the instruction cache to the PC redirection register.

10

Performance

We evaluate the performance of our predictors on the big processor benchmarks. The

benchmarks have been modified to repeat the computation such that they are each

normalized to about 10,000,000 instructions. The performance benefits of the multi-tiered

prediction structure is inconclusive. We expect that the BTB is least accurate at predicting

branches, followed by the Gshare predictor and the TAGE predictor. However, that is not

the observed behavior. There are benchmarks where each of the three predictors

outperform the other two by a substantial margin. One plausible explanation for this

behavior is that these branch predictors are tuned for realistic branch patterns, and the

branch patterns in these benchmarks are not “realistic”. For instance, the qsort

benchmark performs quicksort on a random array. The branches in this case would be

entirely data dependent and almost completely random. Since there is no underlying

correlation in the branch history, the Gshare and TAGE predictors both perform worse

than the BTB.

The hit rate for the predictors across the benchmarks is presented in Table 4. This is

evaluated for a 4-entry BTB, 256-entry Gshare predictor, and 5-component 64-entry

TAGE predictor. The BTB makes predictions for all instructions, but we only quote the hit

rate on branch instructions.

Benchmark BTB Gshare TAGE

towers 214034 (66.9%) 292695 (91.4%) 284371 (88.8%)

median 2288566 (61.9%) 2835521 (76.6%) 2580350 (69.7%)

multiply 2004575 (60.0%) 2609500 (78.2%) 3004702 (90.0%)

qsort 1655807 (63.2%) 1586162 (60.6%) 1503270 (57.4%)

vvadd 1264422 (99.9%) 1264626 (99.9%) 1264664 (99.9%)

Table 5. Predictor hit rate across benchmarks

11

Design Exploration

We investigate the effect of table size on

the performance of the predictors. Figure

3 shows the impact on the hit rate as we

vary the side of the predictor tables from 4

to 256. While the general trend is that

increasing the size of the table improves

the hit rate, in many instances this is not

true. This is probably because the

contrived nature of the benchmarks do not

reflect realistic processor behavior. For

instance, the BTB saturates at 16 entries.

Any further increase in table size does not

affect the hit rate. The benchmarks that

we have used only have about 16 distinct

branches, much less than what a realistic

program might have.

There is some anomalous behavior in the

hit rates for the BTB and TAGE predictor.

For the BTB, increasing the table size

actually decreases the hit rate for the

median and towers benchmarks. It seems

that address aliasing actually improved

the accuracy in this case. For the TAGE

predictor, there is a dip in accuracy for the

towers benchmark at 𝑛 = 32 and the

multiply benchmark at 𝑛 = 256. This is

probably due to the specific interaction of

the loop size and the hash function that

computes the index for the tables. Overall,

12

it seems that benchmarks with more realistic program behavior are needed to

meaningfully characterize the performance of these predictors.

Resources

The code for the project is hosted at https://github.mit.edu/frwang/6375-FP.

References

[1] McFarling S. (1993), Western Research Laboratory Technical Note TN-36: Combining

Branch Predictors.

[2] Seznec A. and Michaud P. (2006), A Case for Partially Tagged Geometric History

Length Branch Prediction, Journal of Instruction-level Parallelism 8.

