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Multi-tiered branch predictor for pipelined processors 
 
Background 
In processor design, branch predictors are hardware structures that make a prediction on 

the direction of branches before the outcome is known for certain. This prevents the 

processor from stalling when faced with control hazards. Instructions after the branch are 

fetched speculatively. If the prediction is found to be correct, the processor proceeds 

without incurring any additional delays. However, if the prediction is found to be incorrect, 

the pipeline is flushed and the fetch unit is redirected to the correct address. For modern 

out-of-order superscalar processors, the fetch stage is decoupled from the execution units 

and there is a large delay between when a branch instruction is fetched and when the 

branch is resolved. This makes branch mispredictions very costly and motivates the 

development of highly accurate branch predictors. 

 

Some modern processors employ a tiered strategy to branch prediction. There is a 

hierarchy of prediction structures where each predictor is slower, larger, and more 

accurate than the last. Closest to the fetch stage is the Branch Target Buffer (BTB). The 

BTB is very tightly coupled to the fetch stage and it predicts the next address before the 

instruction is even fetched from memory. When an instruction is identified as a branch, 

the first level branch predictor kicks in and redirects the instruction flow if it believes the 

BTB to be in error. As the instruction goes through the pipeline, more sophisticated branch 

predictors are consulted and the instruction flow is redirected as is appropriate. These 

branch predictors may take several cycles to compute their results but make use of longer 

history records or are specialized to recognize certain program behavior such as loops or 

function returns. The combination of small and fast predictors and large and slow 

predictors allow designers to strike a good compromise between latency and accuracy. 
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Overview 

In this project we implement a three-tiered branch predictor structure for a pipelined R32I 

RISC-V processor consisting of a BTB and two branch predictors of varying 

sophistication. Later predictors can override the decision made by earlier predictors by 

flushing the pipeline and redirecting the fetch stage. There are two major components to 

this project, the handling of speculative state in the pipeline and the implementation of the 

predictors. For the pipeline aspect of this project, we have to ensure that all right path 

instructions are executed and all wrong path instructions are squashed. We test the 

correctness of the pipeline by running assembly and C benchmarks. The predictors 

themselves are verified by comparing trace dumps of the processor with software models 

to check that all of the predictions match up with the models. Finally, we present some 

results on the effect of table size on predictor accuracy. 

 
 
High-level Design 

We leverage the infrastructure of the processor lab in our project by modifying the three 

stage bypass processor. The multi-tiered predictor structure that we propose is only 

suitable for deeply pipelined processors. We emulate such a processor by splitting the 

decode stage from the execute stage and inserting two additional decode stages. The 

simple structure of the pipeline allows us to abstract away features of a more complex 

processor such as superscalar fetch or out-of-order execution and focus on the branch 

prediction aspects of the design. The two specific branch predictors that we implement 

are the Gshare and TAGE predictors. The Gshare predictor is a simple and effective 

branch predictor that indexes an array of two-bit saturation counters with a hash of the 

branch address and the global branch history [1]. Its straightforward structure makes it a 

good candidate for a small and fast predictor that is tightly coupled to the fetch stage. In 

our implementation, the Gshare predictor returns its result within a single cycle. The 

TAGE predictor is a more sophisticated predictor that makes use of multiple history 

lengths and an array of partially tagged tables to capture correlations from both remote 

and recent branch history [2]. It is one of the highest performing branch predictors for 

which the details are publicly known. Its high accuracy and more complicated prediction 

generation logic makes it a suitable candidate for our secondary predictor. In our 
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implementation, the TAGE predictor returns its result in the next clock cycle. A description 

of the pipeline stages of our processor is presented in Table 1. Stages that may trigger a 

redirection are marked with an asterix. 

 

FE Instruction requested from memory, BTB predicts next PC 

D1* Instruction received from memory, simple control flow instructions resolved, 
prediction received from Gshare  

D2* Prediction received from TAGE 

D3 Data fetched from register file, destination register added to scoreboard 

EX* Instruction executed, branches resolved, predictors updated, loads and stores 
launched 

WB Loads received from memory, destination register written to and removed from 
scoreboard 

Table 1. Description of pipeline stages 

 

Speculative state is managed by a set of three boolean epoch counters, corresponding 

to the three stages of the pipeline where a redirection could occur. Each instruction carries 

an epoch, and if the epoch does not match that of the epoch counters the instruction is 

dropped. When the instruction stream is redirected, the epoch counters are updated, 

invalidating all of the younger instructions in the pipeline. When multiple redirections occur 

in the same cycle, the redirection furthest down the pipeline takes precedence. In the 

execute stage, branches are resolved and the predictors are updated according to their 

individual update policies. A diagram of the processor pipeline is presented in Figure 1. 

Predictors are aligned vertically with the pipeline stage in which it takes effect. 
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Figure 1. Pipeline diagram with predictors 

 

Now we will discuss the performance benefits of the multi-tiered prediction structure. 

Suppose that the prediction generation logic for the TAGE predictor cannot be evaluated 

in a single cycle. If we have only the BTB and the TAGE predictor, the prediction penalties 

for the different cases are shown in Table 1. The average misprediction penalty is given 

by 𝑁"# = 4 − 2𝑃# − 2𝑃#𝑃". 

 
BTB TAGE Penalty 

X 0 4 

0 1 2 

1 1 0 
 

Table 2. Penalty with BTB and TAGE predictor 
 

However, if we insert the Gshare predictor, which is capable of making a prediction 

combinationally within a single cycle, we can potentially redirect an incorrect branch one 

cycle earlier. The new prediction penalties are shown in Table 2 and the average 

misprediction penalty is given by 𝑁")# = 4 − 2𝑃# − 𝑃#𝑃) − 𝑃#𝑃)𝑃". From this we deduce 

that the Gshare predictor will reduce the average misprediction penalty if 𝑃) > 2𝑃"	/	(1 +

𝑃"). In other words, the Gshare predictor will be effective as long as it is significantly more 

accurate than the BTB. 
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BTB Gshare TAGE Penalty 

X X 0 4 

X 0 1 2 

0 1 1 1 

1 1 1 0 
 

Table 3. Penalty with BTB, Gshare, and TAGE predictors 
 

Microarchitectural Description 
Pipeline 

Speculative state in the pipeline is managed with the help of the PcUnit module. The 

PcUnit module holds the PC as well as the three boolean epoch counters. When the 

instruction flow is redirected, the relevant epoch counters in PcUnit as well as the PC for 

the instruction that is next to be fetched is updated. Ephemeral History Registers (EHRs) 

are used to eliminate rule conflicts and allow multiple redirections to occur within the same 

cycle. The EHRs are configured such that if multiple redirections occur within the same 

cycle, the redirection furthest down the pipeline takes precedence. The effects of the 

redirection are felt in the cycle after the redirection takes place. This is accomplished 

through the internal rule doRedirect which fires before all other rules in the same cycle. 

The interface for the PcUnit module is presented below. 
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Figure 2. Gshare and TAGE branch predictors 

 

Gshare predictor 

The Gshare predictor uses an N-bit global history register to keep track of the direction of 

the last N branches. It maintains a branch history table (BHT) with 2N 2-bit saturating 

counters. The global branch history is XORed with the PC to give the BHT index. In the 

execute stage, the counters are incremented if the branch was taken and decremented 

otherwise. An illustration of the Gshare predictor is shown in Figure 2 and its interface is 

presented below. 

 

 
 

TAGE predictor 

The TAGE predictor uses a series of M predictor tables, 𝑇2 with 0 ≤ 𝑖 < 𝑀, each indexed 

with a different history length. This allows it to capture correlations from distant branches 
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while allocating most of its memory to entries with short history length. Table 𝑇8 is indexed 

with only the PC and provides the default predictions. The upper tables are partially 

tagged and make use of geometrically increasing history lengths. If a match is found in 

multiple tables, the table that uses the longest history length takes precedence. All of the 

upper tables have a 3-bit saturating prediction counter and a 2-bit saturating useful 

counter. If a branch is matched in multiple tables and the matching table with the longest 

history length 𝑇2 makes a correct prediction but the matching table with the next longest 

history length 𝑇9 does not, the useful counter in 𝑇2 is incremented. The useful counter 

serves as a hint for evictions when new entries are inserted into the table. For a full 

description of the update policy of the TAGE predictor, refer to the paper by A. Seznec 

[2]. An illustration of the TAGE predictor is shown in Figure 2 and its interface is presented 

below. The TAGE_trainData type holds information that is used by the update policy such 

as the index of the matching tables 𝑇2 and 𝑇9. 

 
 

Verification 

Pipeline 

We verify the correctness of the pipeline by running the processor on assembly and C 

benchmarks. The design passes all test cases in the benchmark suite, which gives us 

confidence that all wrong path instructions are being squashed and all right path 

instructions are being executed. We also inserted instrumentation printouts in the 

processor source code to record the state of the pipeline at every cycle. An example of 

such a trace dump is shown below. Note the redirection in cycle 5818. By inspecting these 

dumps we can verify certain aspects of the operation of the pipeline. For instance, that 

redirects take effect in the cycle after it is triggered, or that instructions marked as wrong 

path are appropriately discarded. 
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Predictor structures 

To verify that our three predictors—BTB, Gshare, and TAGE—are functionally correct, 

we wrote software models that mirror the Bluespec implementations. The trace dumps 

from the benchmarks are fed into these models. Discrepancies between the trace dump 

and the model are flagged as errors. An example of the checker output with simulated 

errors is shown below. 
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Implementation Evaluation 

Utilization 

We compile our design for the Virtex-7 FPGA. The total LUT utilization of the design is 

31.54%. However, most of this is consumed by the PCIe and DDR3 interface logic. The 

total LUT utilization of the processor is 7.33%, an 80% increase over the initial three stage 

bypass design. A breakdown of the processor resource utilization is given in Table 4. 

 

Resource Utilization 

Total LUTs 22255 (7.33%) 

Logic LUTs 22253 (7.33%) 

LUTRAMs 2 (0.01%) 

FFs 18546 (3.05%) 

RAMB36 14 (1.36%) 

RAMB18 6 (0.29%) 
 

Table 4. Processor resource utilization 

 

Timing 

The timing report for the FPGA implementation is shown below. The critical path seems 

to be within the DDR3 interface logic. It only has a logical depth of 2, with 97.7% of the 

delay coming from the routing. The Yosys synthesis report indicates that the critical path 

within the processor is from the instruction cache to the PC redirection register. 
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Performance 

We evaluate the performance of our predictors on the big processor benchmarks. The 

benchmarks have been modified to repeat the computation such that they are each 

normalized to about 10,000,000 instructions. The performance benefits of the multi-tiered 

prediction structure is inconclusive. We expect that the BTB is least accurate at predicting 

branches, followed by the Gshare predictor and the TAGE predictor. However, that is not 

the observed behavior. There are benchmarks where each of the three predictors 

outperform the other two by a substantial margin. One plausible explanation for this 

behavior is that these branch predictors are tuned for realistic branch patterns, and the 

branch patterns in these benchmarks are not “realistic”. For instance, the qsort 

benchmark performs quicksort on a random array. The branches in this case would be 

entirely data dependent and almost completely random. Since there is no underlying 

correlation in the branch history, the Gshare and TAGE predictors both perform worse 

than the BTB. 

 

The hit rate for the predictors across the benchmarks is presented in Table 4. This is 

evaluated for a 4-entry BTB, 256-entry Gshare predictor, and 5-component 64-entry 

TAGE predictor. The BTB makes predictions for all instructions, but we only quote the hit 

rate on branch instructions. 

 

Benchmark BTB Gshare TAGE 

towers 214034 (66.9%) 292695 (91.4%) 284371 (88.8%) 

median 2288566 (61.9%) 2835521 (76.6%) 2580350 (69.7%) 

multiply 2004575 (60.0%) 2609500 (78.2%) 3004702 (90.0%) 

qsort 1655807 (63.2%) 1586162 (60.6%) 1503270 (57.4%) 

vvadd 1264422 (99.9%) 1264626 (99.9%) 1264664 (99.9%) 
 

Table 5. Predictor hit rate across benchmarks 
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Design Exploration 

We investigate the effect of table size on 

the performance of the predictors. Figure 

3 shows the impact on the hit rate as we 

vary the side of the predictor tables from 4 

to 256. While the general trend is that 

increasing the size of the table improves 

the hit rate, in many instances this is not 

true. This is probably because the 

contrived nature of the benchmarks do not 

reflect realistic processor behavior. For 

instance, the BTB saturates at 16 entries. 

Any further increase in table size does not 

affect the hit rate. The benchmarks that 

we have used only have about 16 distinct 

branches, much less than what a realistic 

program might have. 

 

There is some anomalous behavior in the 

hit rates for the BTB and TAGE predictor. 

For the BTB, increasing the table size 

actually decreases the hit rate for the 

median and towers benchmarks. It seems 

that address aliasing actually improved 

the accuracy in this case. For the TAGE 

predictor, there is a dip in accuracy for the 

towers benchmark at 𝑛 = 32 and the 

multiply benchmark at 𝑛 = 256. This is 

probably due to the specific interaction of 

the loop size and the hash function that 

computes the index for the tables. Overall, 
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it seems that benchmarks with more realistic program behavior are needed to 

meaningfully characterize the performance of these predictors. 

 

Resources 

The code for the project is hosted at https://github.mit.edu/frwang/6375-FP. 
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