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1 Introduction

In this project, I design an accelerator to perform sparse matrix dense vector
multiplication (SpMV). We assume that the sparse matrix is known at compile
time, and we can transform its layout in host memory before loading it onto the
accelerator. Such transformations are typically done to improve data locality
or enhance parallelism [1,2]. This can be thought of in terms of the inspector-
executor framework [3]. In the inspector (software) stage, we inspect the sparse
matrix structure and perform the transformations on the host, typically a general
purpose processor. In the executor stage, the computation is executed on the
accelerator hardware using the modified layout. The overhead paid by the
inspector is amortized over multiple calls to the executor, which is common in
applications such as neural net inference and iterative solvers.

In this report, we examine one specific transformation strategy of the sparse
matrix. We present a full stack implementation of the inspector in software,
and synthesize our hardware executor design on an FPGA. We compare the
resulting hardware accelerator performance with optimized CPU and GPU
implementations.

State of the art sparse linear algebra accelerators typically adopt a streaming
approach. For example, in sparse matrix vector multiplication, all the sparse
matrix values and indices are streamed onto multipliers on the accelerator. For
each value/index pair, the corresponding dense input vector element is fetched to
perform the multiplication. This is an input data-dependent load, whose latency
cannot be hidden. This is recognized as the key challenge in designing sparse
matrix vector accelerators [4, 5]. Current remedies typically involve replicating
the dense input vector storage [5], which quickly runs into problems if the dense
input vector is too large. In addition, this kind of design does not consider any
kind of input reuse: if two value/index pairs actually request the same dense
input vector value, that value is fetched in separate memory transactions.

In this work, we examine if our compile time transformations can improve
the memory access patterns of the sparse matrix. In addition, we study if we
can process the sparse matrix in tiles to potentially use hardened on-chip vector
processing resources, such as the AI engines in the Xilinx Versal ACAP.

This project is a first step towards a larger goal to design a compiler stack
that efficiently explores the design space of linear algebra accelerators through
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transformations on the sparse matrix. In this work, the sequence of transforma-
tions is fixed, and the hardware design is fixed to target this particular sequence
of transformations. However, future work will allow a user to specify an arbitrary
sequence of supported transformations. The compiler stack should be able to
transform this matrix in software, and generate the hardware required to execute
the transformed computation.

2 Sparse Matrix Vector Multiplication

2.1 Basic Terminology

Matrix vector multiplication can be modeled as a map reduce. Let’s imagine
that the matrix values are stationary in a grid of registers. When a new dense
vector is presented, its values are broadcast along each column of the matrix. A
multiplication is performed at each matrix value in the map stage. If the matrix
is sparse, then some of the multiplications may be skipped. In the reduce stage,
all the multiplication products in the same row are reduced to the output. This
is illustrated in Figure 1.

2.2 Inspector Transformations

The input to the system is a sparse matrix in a generic format such as COO
or CSR. We will preprocess the sparse matrix with a series of transformations
to obtain a format amenable for an optimized hardware implementation. This
preprocessing stage will be implemented on a general purpose processor for two
reasons: 1) adaptivity: different transformations could be quickly explored in
software 2) performance insensitive: we can amortize the transformation cost
over all subsequent operations involving this matrix.

There are several transformations commonly used on a sparse matrix to
improve data locality, enhance parallelism or increase load balance. In order
to be able to carry out the original computation, the transformations
need to be invertible. [6] Some allowed transformations include:

• Pack: Packing all the nonzeros along one dimension. This transformation
greatly improves data locality on vector or tile based processing units.

• Split: Splitting up the sparse matrix along a dimension. This transforma-
tion enables one to parallelize the computation over different processing
units.

• Reorder: Reordering the sparse matrix along a dimension, given a per-
mutation. The benefit of this transformation depends on the permutation
function.

Note that all of these transformations are invertible, provided that certain
bookkeeping information is saved. For example, if you pack a sparse matrix
and save the original locations of the nonzeros, you can reconstruct the original
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Figure 1: Matrix vector multiplication.
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sparse matrix from the packed values and the saved indices. If you reorder the
columns of a sparse matrix and save the permutation, you can reconstruct the
original sparse matrix. These are auxiliary data structures that are produced
from the transformations. They need to be loaded on to the accelerator as well.

In this work, we consider the following sequence of transformations, which I
call a schedule, on a sparse matrix A(i, j):

Tunable parameters C = 4 , B = 4 , H = 2 , W = 2 ;
A. s p l i t ( i ,C) ; // S p l i t up A in the i dimension to ge t

C sparse matr ices . A i s now a vec to r o f sparse
matr ices

A[ i ] . s p l i t ( j ,B) for i in range (C) ; // S p l i t each
element in A in to B sparse matrices , so A i s now a
2D (C by B) array o f sparse matr ices

A[ i , j ] . r e o rde r ( i , nnz ) for a l l i , j ; // For each sparse
matrix e lement in A, reorder the rows in t ha t

sparse matrix by the number o f nonzeros
A[ i , j ] . pack ( j ) for a l l i , j ; // pack a l l the nonzeros

in each sparse matrix e lement o f A along the j
dimension .

A[ i , j ] . t i l e ( s i z e =(H,W) ) for a l l i , j ; // t i l e each
sparse matrix in t o b l o c k s o f s i z e 2 by 2

A[ i , j ] . pad ( ) for a l l i , j ; // pad each t i l e
A[ i , j ] . f i x o r d e r ( i , j ) for a l l i , j ; // f o r each sparse

matrix , i t e r a t e through the t i l e s in i major
order ( row major )

Let’s elaborate on what just happened in these transformations. First, we will
divide up the matrix. We will first cut horizontally, so that each horizontal stripe
has the same number of nonzeros (except last one). We will then divide each
horizontal stripe into vertical blocks such that each block has the same number of
nonzeros (except last one). Each block is a sparse matrix by itself. It’s evident
that all the blocks resulting from this division will have roughly the same number
of nonzeros. The overall SpMV can be decomposed into sub-problems for each
block, as illustrated in Figure 2. Each block is responsible for the matrix values
in that block, and perform a matrix vector multiplication with its portion of the
input vector, writing to its portion of the output vector. This transformation is
done to parallelize the computation in a load balanced way.

For example, if the original matrix A is 100 by 100 with input vector x and
output vector y, and the block in question is A[34:50,23:45], then this block
performs the matrix vector multiplication with input vector x[23:45] and matrix
A[34:50,23:45]. It will produce a partial output which needs to be accumulated to
y[34:50]. There are other blocks which will also accumulate to y[34:50]. Note that
we cut first horizontally, ensuring that the partial outputs are “lined up”. The
price we pay is that the input reads are not lined up across vertically adjacent
blocks.
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Figure 2: Matrix vector multiplication decomposed to subproblems in each block.
The orange arrows denote broadcast from the corresponding portions of the
input vector and the blue arows denote reduction into the corresponding portions
of the output vector. In the case where multiple blue arrows reduce to the same
portion, there exists possibility for output races.
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We have divided the original sparse matrix into a 2D array of smaller sparse
matrix blocks. Now let’s transform each block. The sequence of transformations
on each block is presented in Figure 3. First, we will sort the rows based on
the number of nonzeros. We will record this permutation, per the invertibility
requirement. Then we will “pack” the nonzeros in each row to the left. This
will produce two data structures, one corresponding to the nonzero values in
the original matrix and another necessary to keep track of the column index of
the nonzero value. Note that we do not need to keep track of the row index
since pack does not change the row index of a nonzero value. The column index
is necessary for fetching the appropriate dense vector value for multiplication.
For example, for the value 7 in the top left corner, we need to keep track of its
column index 2 since we need to multiply 7 with the second element in the dense
vector.

Finally, we will tile the packed nonzeros. The tile size is a tunable parameter.
We will pad the empty positions in the tiles. We will transform these data
structures to a serialized stream to populate the DRAM of the accelerator. We
specified in our schedule that we will iterate through the tiles in row-major order.

These transformations on a sparse matrix block brings several benefits. First,
we are iterating over tiles of nonzero values, which allow us to use vector
processing units. Since we are iterating over tiles, the sorting and packing greatly
increases the density of each tile, reducing the total number of iterations. Now
if different positions inside the same tile share the same dense vector BRAM
access index, such as the two 1s in the blue tile in Figure 3, then it can only be
loaded once from memory and replicated locally, partially addressing the dense
vector BRAM access challenge.

These transformations are associated with their own parameters, such as
split factor and tile size, which all can be tuned. Our choices are listed above:
we split into a 4 by 4 grid, with a tile size of 2 by 2.

These transformations have been fully implemented in Python and tested
with a few sample test cases. The performance is acceptable for relatively small
input matrices, but might run into problems if the matrix gets too large. This
mostly has to do with the way I am storing the sparse matrix as a dense 2D
array with 0 values: we’ll quickly run out of memory for really big matrices.
The current software implementation has only been tested with this particular
schedule, though for future work, it can be extended to other optimization
schedules.

2.3 Executor: Functional Specification

The hardware design almost immediately follows from the sparse matrix trans-
formation. The overall design consists of a grid of processing elements (PE), one
for each block. The processing element is a module a grid of multipliers with
the same size as the tile size 8. This PE will iterate through all the tiles and
perform the matrix vector multiplication for this subproblem. We have fixed
the order of iteration in the schedule. The PE starts at the top left, slides to
the right, and then slides down when it can’t slide right anymore. (So the order
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Figure 3: Transformations of the sparse matrix in a block.

7



in the example in Fig 3 would be pink, blue, magenta.) Different PEs in the
same horizontal stripe (see Figure 2) share the same output buffer, which they
accumulate to atomically.

At each position in the iteration, the PE loads in the appropriate sparse matrix
values and the corresponding dense vector values (determined by the sparse
matrix indices data structure we stored from the pack transformation), multiplies
them element-wise, and accumulates the result. Note that as aforementioned, if
there are repeated indices in the tile, then we need to make fewer requests to
the dense vector memory, exploiting input reuse. In practice, we find that many
real sparse matrices offer high potential for reuse in this sense. If the reuse is
poor, we can permute the rows of the original sparse matrix so that rows with
nonzeros in the same column index can be next to each other, using some other
inspector transformation.

Different PEs operating on the same horizontal band in the sparse matrix
write to the same portion of the output vector. In addition, their rows might be
permuted in different ways internally, complicating the problem even further.
When a PE of size 2 by 2 slides all the way to the left, it will produce intermediate
outputs for 2 indices of the output vector portion, which must be accumulated
to the output vector. We need to look in our saved permutation order to see
what output vector indices these 2 indices correspond to. This is a sparse scatter
operation. Different PEs might perform this sparse scatter at the same time,
and some of the scatter targets might conflict. Since this is not a bottleneck of
the system, the current implementation simply locks the entire buffer when a
particular PE is doing a scatter operation.

3 Exectuor: Microarchitecture

Now that I have described the architecture’s functional specifications, let’s discuss
the microarchitecture. The top level module diagram is shown in Figure 4. The
top level module contains 4 Column of Controllers (CoC) modules as well as the
input vector BRAM. Each CoC module is responsible for one entire horizontal
band in Figure 2. Each Column of Controller module contains 4 PE Controller
modules as well as its own matrix values/index BRAM, permutation index
BRAM and output buffer BRAM. The matrix values/index BRAM contains all
the sparse matrix values and indices that PEs in this column are going to need.
The permutation index BRAM stores information required to direct the outputs
of each PE to the correct address in the output buffer, since we might locally
permute the rows in the sparse matrix block the PE is processing. Each PE
Controller module contains a PE module, a memory controller module and a
lengths BRAM. The lengths BRAM stores some bookkeeping information on
the shape of each packed block, so the PE knows when to slide right and when
to slide down. The memory controller interfaces with the shared input dense
vector BRAM to process memory requests for this PE.

The CoC module is designed as a FSM with several rules, as shown in Figure
5. It always tries to prefetch from the permutation BRAM and the matrix
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Figure 4: Architecture

values/index BRAM to enqueue into the appropriate FIFOs and registers to feed
each PE controller, which is responsible for controlling the PE and producing
the correct results. The FIFO sizes are parameterizable. If the FIFOs are larger
we use more resources, but the prefetching system’s latency can be better hidden.
The PE Controller produces results for a part of the output at at time. Whenever
a new result is produced by a PE Controller, the CoC atomically scatters it into
the output buffer, using the prefetched permutation indices.

Within a PE Controller module (Figure 6), we try to dequeue from the
sparse matrix values/indices FIFO. The sparse matrix indices are used to feed
the Memory Controller module, which interfaces with the shared dense vector
BRAM to produce the dense vector values. Once these values are available they
are fed to the PE alongside with the sparse matrix values to produce the local
computation result. We then move the PE to the right. After it has depleted
all the positions in its current band of rows, it moves down and starts again
from the leftmost position. It enqueues the intermediate accumulation output
for this row band into the output FIFO, which is then scattered into the output
buffer with the appropriate permutation indices in the CoC module. We need
the lengths BRAM to store how many positions are there in each row band. In
practice, we only need to load from this BRAM once for every row band, and its
access pattern is completely predictable. Its access time is completely hidden.

The Memory Controller module (Figure 7) is by far the most complicated
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Figure 5: CoC module FSM. Arrows indicate dependence relationships. (Guards
in BSV)
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Figure 6: PE Controller Module FSM.Arrows indicate dependence relationships.
(Guards in BSV)
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Figure 7: Architecture of the memory controller unit. It consists of one FSM
to control requests to each bank of the shared BRAM. Each FSM has its own
caching system. The combinational logic that distributes work to the FSMs is
very complicated and is likely the bottleneck of the system.
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of all the modules. Each PE has its associated Memory Controller module. It
is responsible for converting the sparse matrix indices in a PE position to the
appropriate input dense vector values. All the PEs in the system share access to
a single dense vector BRAM structure. In our design, this BRAM is chosen to be
4-way banked single port. Each Memory Controller module has four Bank FSMs,
each controlling accesses to their corresponding bank. When a sparse matrix
indices request comes in, it is translated through complicated combinational
logic to work assignments for each Bank FSM. Each Bank FSM then iterates
through its assignment.

To handle potential reuse inside of a tile, we implement a 4-way fully asso-
ciative cache inside each bank FSM. The FA cache is implemented as a circular
buffer, which effectively uses a LRU eviction policy. If the request is in cache,
the bank FSM uses the cached result and avoids the trip to the BRAM. This
appears to only save one cycle, but also greatly reduces contention on the shared
BRAM resource, saving many more cycles. If it’s a cache miss, then the Bank
FSM sends the request to BRAM. It will write the response to the cache as well
as the result. When all the Bank FSMs are done, the Memory Controller module
produces the final result dense vector values for this PE position.

The PE itself is actually very simple. It’s just a grid of multipliers. In BSV,
it’s implemented right now with two mutually exclusive rules: fill-compute and
flush. The fill rule-compute fills the multipliers with the input vector values and
the input matrix values, then does the multiplication at each location in the
grid. The flush rule adds multiplier outputs vertically through either cascade
adder or tree adder and then produces the output. This effectively performs a 2
by 2 matrix vector multiplication in two cycles. We can also implement this as a
systolic array with higher throughput, a potential future optimization.

4 Synthesis and Simulation Results

The design was compiled and synthesized successfully on the VC707 evaluation
board for a 4 by 4 grid of 2 by 2 PEs, with a 4-way banked dense vector BRAM.
The FA cache size was chosen to be 4. The cycle count on FPGA matches the
cycle count in Bluesim, suggesting that to evaluate the performance of different
designs, we can just use Bluesim (assuming same clock rate).

We notice a disproportionately high usage of LUTs to DSPs. Indeed, we only
use 10 percent of the DSPs on the chip with 33 percent of the LUTs and FFs. This
limits the scaling of the design to effectively use all of the hardened computational
resources on chip. This is most likely because of the over complicated memory
controller logic, which is a target of future optimizations. This high logic usage
also slows down the max clock rate of the design to 50 Mhz. (The critical path
is not in my design logic but the system clock.) The BRAM usage depends
on the input matrix, which is less than 5 percent for a small 1K by 1K matrix
with around 10K nonzeros and is projected to scale linearly with the number of
nonzeros in the input matrix.

There are more severe challenges in testing larger designs, even in simulation.
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Figure 8: PE Microarchitecture
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Figure 9: Performance comparisons between FPGA and GPU for four sparse
matrices with different sizes and densities.

This is because the memory controller combinational logic uses a lot of for loops
and other constructs which are poorly handled by the Bluespec compiler. As a
result, this severely limited the extent of design exploration I was able to do.

5 Performance Characteristics

We evaluate the performance of our BRAM-based architecture on four sparse
matrices. The statistics of these sparse matrices and the performance of our
FPGA vs baseline GPU and CPU implementations are shown in Figure 9 and
Figure 10.

We run GPU benchmarking results on a V100 with 15.7 TFLOPs and 900Gb/s
memory bandwidth. This GPU typically costs around 10,000 dollars with TDP
300 W. The peak clock speed is nearly 1.5 Ghz. The CPU implementation runs
on 8 cores with AVX-512, for a total of theoretical peak 64 multiplications per
cycle at 2.00 Ghz, which is 128 GFLOPs.

In comparison, the hardware design in this project has only 64 multipliers.
The design was synthesized with a clock speed of 50 Mhz, which translates
to only 3.2 GFLOPs. (about 5000 times slower than the V100 and 40 times
slower than the CPU). The performance numbers are roughly in line with those
GFLOPs, as shown in Figure 10. We are about an order of magnitude slower
than the CPU implementation for all matrices, and our runtime scales with the
number of nonzeros. For the GPU, the runtime is not dictated by the number of
nonzeros but by matrix specific access patterns. Garon2 has large dense blocks
which greatly reduce runtime due to favorable L1 caching characteristics.
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Figure 10: Performance scaling with number of nonzeros for FPGA and GPU.

From the start, we know that our design will be bottlenecked by dense
vector BRAM bandwidth. We present some results in Figure 11 to confirm
this hypothesis. In the figure, the x axis is 100 cycles. First, we try a baseline
implementation with a shared single port dense vector BRAM without any
banking or local caching. The theoretical peak number of BRAM responses is
100. We see that the dense vector BRAM utilization fluctuates between 40 to 80
percent, and dominates all memory traffic. When we add 4-way banking, the
theoretical peak number of BRAM responses is 200, as in my implementation
this introduces a conflict between the send request rule and the get response
rule, so they can no longer be concurrent. (100 times 4 divide 2 = 200) We see
that the BRAM utilization improves dramatically, and halves the total number
of cycles. When we add in local caching, the total number of BRAM requests
decrease, further decreasing the number of cycles by 20 percent. Figure 11d
compares the BRAM traffic under those three schemes. The banking improves
utilization but does not decrease the number of total requests. The caching
keeps utilization high but decreases requests.
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Figure 11: BRAM traffic for matrix values/index BRAM, permutation BRAM
and dense vector BRAM for a) Baseline design with single port shared dense
vector BRAM for all PEs b) 4-way banked dense vector BRAM c) 4-way banked
dense vector BRAM with 4-way FA cache for each bank for each PE. d) A
comparison of dense vector BRAM traffic achieved for these three designs.

6 Future Work

6.1 Dense vector BRAM replication

We observe that further increasing the number of PEs does not lead to greatly
improved performance. Indeed, if we don’t change our dense vector memory con-
figuration, and just scale the number of PEs by 4, we only increase performance
by about 20 percent. This is because we have already saturated the bandwidth
to the dense vector BRAM, as indicated in Figure 12. Even though we have
four times as many PEs, the number of BRAM responses do not significantly
increase. To alleviate this problem, we can add more banks to the dense vector
BRAM, but this required significant logic area overhead due to the complicated
bank control logic. We can also adopt the prevalent approach in literature and
replicate the dense vector BRAM. This is acceptable when the matrix is small
and there is sufficient on chip BRAM resources. We plan to add the replication
factor as a tunable parameter of the design and explore this option in the future.
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Figure 12: Poor scaling with increased number of PEs. Dense vector BRAM
response throughput fails to scale with more PEs.

6.2 Restructuring sparse matrix/index BRAM

Currently, a line of the sparse matrix/index BRAM contains all the sparse matrix
values and indices necessary for a single PE computation (4 matrix values and 4
indices). We can increase the line width further to include multiple PE positions
to lower the amount of requests made to the sparse matrix/index BRAMs. In
addition, currently, we allocate one single port BRAM for each column of PEs.
We could allocate a separate BRAM for each PE with no duplication of memory,
since we know each PE will access different parts of this shared BRAM. In short,
since sparse matrix/index access pattern is static, it can be greatly optimized.
These further optimizations were not explored since they are not the bottleneck
of the design.

6.3 Optimization of dense vector bank control

The logic for each PE to correspond with the dense vector BRAM is quite
complicated, as explained above and outlined in Figure 7. This logic could
be simplified in different ways to accelerate Bluespec compilation and reduce
eventual logic area, which could also result in a higher operating frequency. I
experimented with a new implementation together with Shuotao. It was not
able to significantly accelerate compile time, though it could be synthesized to
operate at a higher frequency (66 Mhz vs. 50 Mhz now). What we really need
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to do is to add synthesize boundaries around the memory controller modules,
which is not currently possible since we are passing the dense vector BRAM
interface to every instance of the memory controller modules.

6.4 Making dense vector BRAM push based

Since the matrix sparsity pattern is known in advance, we know which PEs
are going to need which dense vector values when. We can implement a push
based dense vector BRAM. We thus no longer need to make requests. Kudos to
Shuotao for this idea. I will work on this.

6.5 DRAM

I codesigned a DRAM interface for the accelerator together with Josh Noel. For
large matrices we might not be able to store the sparse matrix values/indices in
the BRAM. The design is shown in Figure 13. In DRAM, each PE will have
assigned to it a continuous chunk of addresses. The lines will just contain the
tile data in compressed format. The DRAM line boundary is meaningless, it’s
just all chunks of data. Locally, for each PE, we will keep a circular buffer of
a parameterizable size. The circular buffer keeps track of the lines we have
fetched in the DRAM. There will be a rule that looks at that circular buffer,
takes off data corresponding to a tile and frees up space. This interfaces directly
with the PE controller module. Each PE will have a rule that makes request to
the DRAM to fill up this circular buffer. This means that BSV will impose an
internal ordering on those requests. Whenever a PE gets backpressured from
its circular buffer, the PEs after it can go. It’s not really fair but should work
in practice. In Figure 13, blue arrows represent data movement and red arrows
represent backpressure. We are able to set it up through Connectal and have
our DRAM stack give results. They are just not correct yet.
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