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Fixed Function Configurable Graphics Pipeline 

Purpose 
This project seeks to design a simple, fixed-function, configurable graphics pipeline and 
program it to an FPGA. The aim is not to make an architecture based on highly parallel 
general compute cores as seen in modern graphics processing units, but instead to 
implement some of the functions that might have been available in early graphics 
accelerators. Such a design run on an FPGA should be able to perform rendering 
operations much faster than a program running on a CPU. 

Background 
We count the pixels of modern screens by the millions, and applications such as 3D 
rendering require many calculations per pixel. Fortunately, much of this work is highly 
parallelizable. Modern graphics processing units (GPUs) are highly sophisticated 
architectures, combining specialized hardware with thousands of parallel processors. 
These architectures are extremely powerful, but are out of reach for a student project to 
design. 

Nonetheless, the basic theory and algorithms for how to convert vertex information into an 
image are relatively accessible. By carefully selecting just some essential and simple 
features, we can define a purely feed-forward pipeline that will be relatively easy to 
implement in hardware. The function of this pipeline is to take in a stream of vertex data, 
describing a 3D mesh, and output pixel data to be combined in an image. 

1. Vertex input 
The position values of the vertices of triangles we want to render will be read from a 
file on the host machine and fed into the pipeline on the FPGA. The vertex values 
are composed of (x, y, z) coordinates. 

2. Transformation 

transform (objectSpace.xyz) ->  cameraSpace .xyz 

This step will be configured via a separate command through the host-to-FPGA 
interface to store a 3x3 transformation matrix and translation vector. These two 
provide all necessary information for relevant 3D transformations up to and 
including stretching to fit a non-square viewport. Typically, 4x4 matrices are 
preferred for their more general applicability, but this optimization reduces the 
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computational cost (compared with a 4x4 matrix) from 16 multiplications and 12 
additions to 9 multiplications and 9 additions. 

3. Perspective Divide 

perspectiveDivide ( cameraSpace.xyz) -> clipSpace .xyz 

This is the magic that allows for perspective projection. And all you have to do is 
divide by z. More explicitly, 
clipSpace.xy  = - cameraSpace.xy / cameraSpace.z 

As a separate concern, we want to remap z in order to increase depth precision near 
to the camera. 
clipSpace.z  = cameraSpace. z * a - b 

Where a and b are constants calculated based on the near and far clipping planes. 
As a result, z is mapped non-linearly so that the clipping bounds are 0 and 1. 

4. Triangle Processing 

generateLines (clipSpace .xyz stream)  -> clipSpace.xyz pair stream 

The input stream at the beginning will be in the form of triangles. Each triangle will 
generate up to three lines, and this stage has the simple job of feeding each pair of 
a triangle to the Line Rasterization stage. 

Each line can here be clipped or culled. If no part of a line would appear within the 
clipping bounds, then the line does not need to be passed on to the line 
rasterization stage. 

5. Line Rasterization 

drawLine (clipSpace .xyz, clipSpace.xyz) -> clipSpace.xyz stream 

There are many possible approaches. We will use XiaoLin Wu's  algorithm for its 1

relative simplicity, superior performance, and anti-aliasing. Some multiplication is 
required for each line, but not for each pixel, making the algorithm especially 
efficient for long lines. 

6. Fragment Processing 

1 Wu, X. (1991). An efficient antialiasing technique. Proceedings of the 18th Annual Conference on 
Computer Graphics and Interactive Techniques - SIGGRAPH 91. 
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At first, fragments will be colored uniformly. Then per-vertex colors may be added. 
The colors would be blended along lines between vertices in the line drawing 
algorithm. 

7. Frame Buffer 
Combining the generated fragments into an image is an important step. We will take 
the simple approach of selecting only the fragment closest to the screen for each 
pixel. For the extent of this project, this work will be done on the host machine. 

 

 

Test Plan 
In the end, a few rendered images should be pretty good evidence that everything is 
working correctly. That leaves us with little for debugging when things do not work, 
however. There is a great benefit from the architecture being a feed-forward pipeline: each 
stage of the pipeline is a well-defined function of its input, and there are no complex state 
interactions to consider. 

We will first write a fully-functioning version of the pipeline in C++ code. This will make it 
easier to iterate on and perfect each stage's algorithmic implementation. With this code as 
a reference, we can feed data into each stage of the hardware pipeline and know what 
output to expect. Any deviation in the output will be easily traced to the underlying error; 
simply start at the beginning and see which stage has the first incorrect output. 

Microarchitecture and Host Program 

Host-FPGA Communication 
The project consists primarily of Bluespec System Verilog code, which ultimately compiles 
to a format that programs the FPGA. Separately, we have C++ code, which is compiled and 
run on a linux host machine to generate the inputs to the FPGA pipeline, process the 
output, and run tests. We needed to have some way of facilitating the communication 
between the two ends of the system. This alone might have been a great deal of work, but 
we used a powerful build tool called Connectal . Using Connectal, we could simply declare 2

interfaces between our hardware and software code, and everything that needed to 
happen in the middle to make it happen was generated automatically. 

2 https://github.com/cambridgehackers/connectal 
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Triangle Input 
The first order of business 
for the C++ program was to 
generate the Transform 
(consisting of a 3x3 matrix 
and a vector) and send it to 
the FPGA. A small library of 
code for all of the relevant 
math was written. The 
Transform represents all of 
the transforms necessary to 
take a vertex position from 
object space (the position of 
a vertex relative to the 
object's own center) to 
camera space (the position 
of a vertex relative to the 
camera's location and 
orientation). 

After the Transform is set on the FPGA, the C++ program takes care of sending a stream of 
vertex information to the FPGA. First, the information is loaded from an OBJ file. This yields 
an array of triangles, each three 
vertices. The floating point values are 
converted to a fixed point 
representation, which we used on the 
FPGA, and these values are sent over 
the Connectal interface. 

Separating into Vertices 
Instead of sending vertices to the 
FPGA one at a time, we sent them in 
groupings of three, representing a 
triangle each. The next steps of the 
pipeline, however, operate on 
individual vertices. In order to process 
one at a time, we used two vertex 
registers as buffers, with two 
corresponding boolean registers. 
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When a new triangle is dequeued from the FIFO, the first vertex goes straight to the 
Transformation stage, and the other two are stored in the two vertex registers, with their 
corresponding boolean registers set to True. On the next step, the first buffered vertex 
goes to the Transformation stage, and the second takes its place.  Repeat for the third 
vertex. The cycle knows to repeat itself based on the values stored in the boolean registers. 
See pseudocode above. 

Alternatively, if this stage were a bottleneck in the pipeline, we could have created three 
parallel instantiations of the Transformation stage. 

Transformation and Perspective Divide 
 

The Transformation stage itself consists of nine multiplications, nine additions, and three 
divisions. Even though many of these operations are in parallel, trying to do them all in one 
cycle had too long a critical path. In one build, the critical path delay was over 45 
nanoseconds, well over our target of 20 nanoseconds. It was a fairly straightforward 
process to break the operation up into a pipeline, with each stage having a depth of one 
operation, either addition, multiplication, or multi-cycle division. Each of the nine 
multiplications are in the first cycle. Then, to add four items together, we add two pairs in 
one cycle, and add the two sums in the next. The result is enqueued to a pipelined divider. 

After pipelining this stage, the critical path was reduced from over 45 nanoseconds to 
under 13 nanoseconds. 
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Line Rasterization 
A software implementation of XiaoLin Wu's line-drawing algorithm can be very short and 
simple, but designing an efficient implementation for FPGA required more code than any 
other part of this project. See the Appendix for a less rigorous introduction. 

We can break the algorithm into two logical stages: setup, and iteration. The setup stage, 
without pipelining, has a much greater critical path. In our build, it had a path of 
approximately 43 nanoseconds, approximately the same as the unpipelined 
Transformation and Perspective Divide stage. On the other hand, the critical path of the 
iteration stage is dominated by a 12-bit addition. Without building it in isolation, it is not 
clear what the critical path length is, but it is at worst less than 13 nanoseconds. 

A rough view of how the setup stage of the line drawing algorithm was pipelined 

Fragment Processing and Frame Buffer 
In this project, the pipeline returns a stream of pixel locations with intensities, and it is the 
responsibility of the host machine to compile that information into an image. This requires 
very little code, using a graphics or image library, but actually this step is very significant, 
computationally. We benefit from the CPU's caching. If instead we were to do a naive 
implementation on the FPGA, using its connected DRAM, our system would spend most of 
its time waiting for the memory. We would want to implement a caching system that would 
cache some portion of the framebuffer at a time. This would be a great project itself, and it 
would be very interesting to see how well different approaches work. How many line 
rasterizers could we have running in parallel? How to allocate and update framebuffer tiles 
to different rasterizers? 
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Remarks 
If I were to choose one lesson learned from this project, I would say data locality. I am not 
sure if this is even the right term. It is not specifically regarding instructions/data being near 
each other in memory. Rather, it seems extremely important how the data is organized 
during computation. The closer it is to computation when you want to compute on it, the 
better. The less work you have to do to organize it, the better. 

One apparent weakness to a pipeline like this is that the output data is very disorganized. 
You can compute fragments at a very high rate, but then you have to route each of those 
fragments to some location in the framebuffer. This can easily take more silicon and power 
than the more interesting computations! Just think of how much area of a modern CPU or 
GPU is consumed by its cache. 

The pipeline currently has a throughput of one fragment/pixel per cycle. At around 66 MHz, 
this can achieve a 60 Hz frame rate on a 1024x1024 resolution display, even in near 
worst-case scenarios, writing one fragment per pixel. Of course, there is no limit to how 
bad a worst case can be - what if we tried to draw a trillion triangles? 
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Appendix 

Images 
Right is the first image generated. It 
was supposed to be a triangle 

 

 

 

 

 

 

 

 

 

 

 

 

This was also supposed to be a 
triangle. The problem here was that 
the slope for the line-drawing 
algorithm was not being correctly 
calculated. 
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This was an attempted render of the 
Suzanne monkey head model, which 
ships with the free software Blender3D 

 

 

 

 

 

 

 

 

 

 

 

 

Only after lots of debugging did we 
discover that the reason for many 
errors was simply that we did not give 
the pipeline enough time to finish. The 
solution was to implement a sort of 
handshake. The host machine 
signalled that it was done. Then the 
FPGA would signal when it was ready 
to be terminated. Only then would the 
host machine terminate the FPGA. 

 

 

 

 

 

 



  9 
 

 

In the end, we were able to generate 
images successfully.  

 

 

 

 

 

 

 

 

 

Multiplication 
The Xilinx VC707 boards used for this project have a large number of Digital Signal 
Processing units, which can perform some common, complex functions, including 
multiplication. Using these "DSP48E1" slices should give significant improvements in both 
path delay and area, when compared to implementing the same functions in look-up 
tables. 

Without requiring us to do anything special in our code, Xilinx's build tool was able to 
implement our multiplication with its DSP slices. In all, there were 10 DSP48E1 units used: 
nine in the Transformation stage, and one in the Line Rasterization stage. 

Xiaolin Wu Algorithm 
Line-drawing requires casting from two-dimensional continuous space to two-dimensional 
discrete space. A naive algorithm may operate something like this: 

1. Calculate the slope and offset of the line 
1.1. , k = (x −x )b a

(y −y )b a b = ya  

2. For each x along the line, find y 
2.1. , x x , .., }∀ i ∈ { a + 1 . xb − 1 loor( (x )k  )yi = f i − xa + b  

For most cases, this will work just fine. There comes some trouble, however, when x )( b − xa
approaches zero. Swapping the x and y values before performing the algorithm puts the 
zero in the numerator, and the algorithm works. Just remember to swap them back in the 
end! Further, we can easily do some similar swapping to transform any line to be in the first 
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octant. This simplifies the problem so that we only need to 
consider lines with a positive slope less than or equal to one. 

There are two kinds of improvements  we would like to make to 
the naive algorithm: 

1. Avoid having to do multiplication for each pixel. A straight line 
(or line segment) is the epitome of linearity. It only makes 
sense that we should be able to traverse a line using only 
repeated addition. 

2. Perform some sort of antialiasing. Our output space has finite 
resolution, but we can make lines less jagged. The examples 
to the right show the difference. Above is using the naive 
algorithm, with no antialiasing. Below is the expected 
output of XiaoLin Wu's algorithm. 

 

 

 

 

Xiaolin Wu's algorithm and other types of antialiasing create a softer line, which can have a 
rope-like effect 

 

The main trick behind XiaoLin Wu's algorithm is in an n-bit unsigned integer, called D. This 
integer represents the fractional distance of the line from the center of a pixel, measured 
on the scale [0, 1), with the integer value  representing the maximum distance, 2n − 1 1 − 2−n

. 
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Before most of the line-drawing can be done, we must calculate the value of d, also an n-bit 
unsigned integer, representing the slope of the line. Recall that we have constrained all 
lines to a form where the slope fits in the range [0, 1).  

At the beginning of drawing a line, D is initialized to the value 0, and the first pixel output 
 is already given as input to this function. For the next pixel, to the right of the first,x , )( 0 y0  

we consider the column  and must determine whether to draw at row  or .x0 + 1 y0 y0 + 1  
For this, we add d to D and see if the result has resulted in integer overflow. If there has 
been integer overflow, then we know that the line is now above the center of the row ,y0 + 1  
and we should use that as our new offset. 

 

 

 

 

Computing d requires some division and multiplication, but only once per line. This already 
makes the algorithm much faster than our naive one. XiaoLin Wu's algorithm further 
exploits some symmetry for even greater efficiency. 

First, without requiring any additional computational work, the integer value D can be used 
to determine the intensity of each pixel. For the current offset (shown with blue dots 
above), the intensity is proportional to the bitwise inverse of D, and for the pixel 
immediately above it (shown in green), the intensity is proportional to D. The original paper 
and article1 do a great job explaining why. 

Finally, the number of fragments generated per cycle is doubled by mirroring the line 
across its middle. Each step made from left to right is also made from right to left, in the 
opposite direction. The intensity values are shared across this symmetry. 

In the end, the algorithm can produce four pixel fragments per cycle. There is little 
computational complexity beyond a single addition, so this step can be run at a fairly high 
frequency and only take up a small portion of the FPGA. 


