
Student: Thomas Watson
Mentor: Thomas Bourgeat

Fixed Function Configurable Graphics Pipeline

Purpose
This project seeks to design a simple, fixed-function, configurable graphics pipeline and
program it to an FPGA. The aim is not to make an architecture based on highly parallel
general compute cores as seen in modern graphics processing units, but instead to
implement some of the functions that might have been available in early graphics
accelerators. Such a design run on an FPGA should be able to perform rendering
operations much faster than a program running on a CPU.

Background
We count the pixels of modern screens by the millions, and applications such as 3D
rendering require many calculations per pixel. Fortunately, much of this work is highly
parallelizable. Modern graphics processing units (GPUs) are highly sophisticated
architectures, combining specialized hardware with thousands of parallel processors.
These architectures are extremely powerful, but are out of reach for a student project to
design.

Nonetheless, the basic theory and algorithms for how to convert vertex information into an
image are relatively accessible. By carefully selecting just some essential and simple
features, we can define a purely feed-forward pipeline that will be relatively easy to
implement in hardware. The function of this pipeline is to take in a stream of vertex data,
describing a 3D mesh, and output pixel data to be combined in an image.

1. Vertex input
The position values of the vertices of triangles we want to render will be read from a
file on the host machine and fed into the pipeline on the FPGA. The vertex values
are composed of (x, y, z) coordinates.

2. Transformation

transform (objectSpace.xyz) -> cameraSpace .xyz

This step will be configured via a separate command through the host-to-FPGA
interface to store a 3x3 transformation matrix and translation vector. These two
provide all necessary information for relevant 3D transformations up to and
including stretching to fit a non-square viewport. Typically, 4x4 matrices are
preferred for their more general applicability, but this optimization reduces the

 1

computational cost (compared with a 4x4 matrix) from 16 multiplications and 12
additions to 9 multiplications and 9 additions.

3. Perspective Divide

perspectiveDivide (cameraSpace.xyz) -> clipSpace .xyz

This is the magic that allows for perspective projection. And all you have to do is
divide by z. More explicitly,
clipSpace.xy = - cameraSpace.xy / cameraSpace.z

As a separate concern, we want to remap z in order to increase depth precision near
to the camera.
clipSpace.z = cameraSpace. z * a - b

Where a and b are constants calculated based on the near and far clipping planes.
As a result, z is mapped non-linearly so that the clipping bounds are 0 and 1.

4. Triangle Processing

generateLines (clipSpace .xyz stream) -> clipSpace.xyz pair stream

The input stream at the beginning will be in the form of triangles. Each triangle will
generate up to three lines, and this stage has the simple job of feeding each pair of
a triangle to the Line Rasterization stage.

Each line can here be clipped or culled. If no part of a line would appear within the
clipping bounds, then the line does not need to be passed on to the line
rasterization stage.

5. Line Rasterization

drawLine (clipSpace .xyz, clipSpace.xyz) -> clipSpace.xyz stream

There are many possible approaches. We will use XiaoLin Wu's algorithm for its 1

relative simplicity, superior performance, and anti-aliasing. Some multiplication is
required for each line, but not for each pixel, making the algorithm especially
efficient for long lines.

6. Fragment Processing

1 Wu, X. (1991). An efficient antialiasing technique. Proceedings of the 18th Annual Conference on
Computer Graphics and Interactive Techniques - SIGGRAPH 91.

 2

At first, fragments will be colored uniformly. Then per-vertex colors may be added.
The colors would be blended along lines between vertices in the line drawing
algorithm.

7. Frame Buffer
Combining the generated fragments into an image is an important step. We will take
the simple approach of selecting only the fragment closest to the screen for each
pixel. For the extent of this project, this work will be done on the host machine.

Test Plan
In the end, a few rendered images should be pretty good evidence that everything is
working correctly. That leaves us with little for debugging when things do not work,
however. There is a great benefit from the architecture being a feed-forward pipeline: each
stage of the pipeline is a well-defined function of its input, and there are no complex state
interactions to consider.

We will first write a fully-functioning version of the pipeline in C++ code. This will make it
easier to iterate on and perfect each stage's algorithmic implementation. With this code as
a reference, we can feed data into each stage of the hardware pipeline and know what
output to expect. Any deviation in the output will be easily traced to the underlying error;
simply start at the beginning and see which stage has the first incorrect output.

Microarchitecture and Host Program

Host-FPGA Communication
The project consists primarily of Bluespec System Verilog code, which ultimately compiles
to a format that programs the FPGA. Separately, we have C++ code, which is compiled and
run on a linux host machine to generate the inputs to the FPGA pipeline, process the
output, and run tests. We needed to have some way of facilitating the communication
between the two ends of the system. This alone might have been a great deal of work, but
we used a powerful build tool called Connectal . Using Connectal, we could simply declare 2

interfaces between our hardware and software code, and everything that needed to
happen in the middle to make it happen was generated automatically.

2 https://github.com/cambridgehackers/connectal

 3

Triangle Input
The first order of business
for the C++ program was to
generate the Transform
(consisting of a 3x3 matrix
and a vector) and send it to
the FPGA. A small library of
code for all of the relevant
math was written. The
Transform represents all of
the transforms necessary to
take a vertex position from
object space (the position of
a vertex relative to the
object's own center) to
camera space (the position
of a vertex relative to the
camera's location and
orientation).

After the Transform is set on the FPGA, the C++ program takes care of sending a stream of
vertex information to the FPGA. First, the information is loaded from an OBJ file. This yields
an array of triangles, each three
vertices. The floating point values are
converted to a fixed point
representation, which we used on the
FPGA, and these values are sent over
the Connectal interface.

Separating into Vertices
Instead of sending vertices to the
FPGA one at a time, we sent them in
groupings of three, representing a
triangle each. The next steps of the
pipeline, however, operate on
individual vertices. In order to process
one at a time, we used two vertex
registers as buffers, with two
corresponding boolean registers.

 4

When a new triangle is dequeued from the FIFO, the first vertex goes straight to the
Transformation stage, and the other two are stored in the two vertex registers, with their
corresponding boolean registers set to True. On the next step, the first buffered vertex
goes to the Transformation stage, and the second takes its place. Repeat for the third
vertex. The cycle knows to repeat itself based on the values stored in the boolean registers.
See pseudocode above.

Alternatively, if this stage were a bottleneck in the pipeline, we could have created three
parallel instantiations of the Transformation stage.

Transformation and Perspective Divide

The Transformation stage itself consists of nine multiplications, nine additions, and three
divisions. Even though many of these operations are in parallel, trying to do them all in one
cycle had too long a critical path. In one build, the critical path delay was over 45
nanoseconds, well over our target of 20 nanoseconds. It was a fairly straightforward
process to break the operation up into a pipeline, with each stage having a depth of one
operation, either addition, multiplication, or multi-cycle division. Each of the nine
multiplications are in the first cycle. Then, to add four items together, we add two pairs in
one cycle, and add the two sums in the next. The result is enqueued to a pipelined divider.

After pipelining this stage, the critical path was reduced from over 45 nanoseconds to
under 13 nanoseconds.

 5

Line Rasterization
A software implementation of XiaoLin Wu's line-drawing algorithm can be very short and
simple, but designing an efficient implementation for FPGA required more code than any
other part of this project. See the Appendix for a less rigorous introduction.

We can break the algorithm into two logical stages: setup, and iteration. The setup stage,
without pipelining, has a much greater critical path. In our build, it had a path of
approximately 43 nanoseconds, approximately the same as the unpipelined
Transformation and Perspective Divide stage. On the other hand, the critical path of the
iteration stage is dominated by a 12-bit addition. Without building it in isolation, it is not
clear what the critical path length is, but it is at worst less than 13 nanoseconds.

A rough view of how the setup stage of the line drawing algorithm was pipelined

Fragment Processing and Frame Buffer
In this project, the pipeline returns a stream of pixel locations with intensities, and it is the
responsibility of the host machine to compile that information into an image. This requires
very little code, using a graphics or image library, but actually this step is very significant,
computationally. We benefit from the CPU's caching. If instead we were to do a naive
implementation on the FPGA, using its connected DRAM, our system would spend most of
its time waiting for the memory. We would want to implement a caching system that would
cache some portion of the framebuffer at a time. This would be a great project itself, and it
would be very interesting to see how well different approaches work. How many line
rasterizers could we have running in parallel? How to allocate and update framebuffer tiles
to different rasterizers?

 6

Remarks
If I were to choose one lesson learned from this project, I would say data locality. I am not
sure if this is even the right term. It is not specifically regarding instructions/data being near
each other in memory. Rather, it seems extremely important how the data is organized
during computation. The closer it is to computation when you want to compute on it, the
better. The less work you have to do to organize it, the better.

One apparent weakness to a pipeline like this is that the output data is very disorganized.
You can compute fragments at a very high rate, but then you have to route each of those
fragments to some location in the framebuffer. This can easily take more silicon and power
than the more interesting computations! Just think of how much area of a modern CPU or
GPU is consumed by its cache.

The pipeline currently has a throughput of one fragment/pixel per cycle. At around 66 MHz,
this can achieve a 60 Hz frame rate on a 1024x1024 resolution display, even in near
worst-case scenarios, writing one fragment per pixel. Of course, there is no limit to how
bad a worst case can be - what if we tried to draw a trillion triangles?

 7

Appendix

Images
Right is the first image generated. It
was supposed to be a triangle

This was also supposed to be a
triangle. The problem here was that
the slope for the line-drawing
algorithm was not being correctly
calculated.

 8

This was an attempted render of the
Suzanne monkey head model, which
ships with the free software Blender3D

Only after lots of debugging did we
discover that the reason for many
errors was simply that we did not give
the pipeline enough time to finish. The
solution was to implement a sort of
handshake. The host machine
signalled that it was done. Then the
FPGA would signal when it was ready
to be terminated. Only then would the
host machine terminate the FPGA.

 9

In the end, we were able to generate
images successfully.

Multiplication
The Xilinx VC707 boards used for this project have a large number of Digital Signal
Processing units, which can perform some common, complex functions, including
multiplication. Using these "DSP48E1" slices should give significant improvements in both
path delay and area, when compared to implementing the same functions in look-up
tables.

Without requiring us to do anything special in our code, Xilinx's build tool was able to
implement our multiplication with its DSP slices. In all, there were 10 DSP48E1 units used:
nine in the Transformation stage, and one in the Line Rasterization stage.

Xiaolin Wu Algorithm
Line-drawing requires casting from two-dimensional continuous space to two-dimensional
discrete space. A naive algorithm may operate something like this:

1. Calculate the slope and offset of the line
1.1. , k = (x −x)b a

(y −y)b a b = ya

2. For each x along the line, find y
2.1. , x x , .., }∀ i ∈ { a + 1 . xb − 1 loor((x)k)yi = f i − xa + b

For most cases, this will work just fine. There comes some trouble, however, when x)(b − xa
approaches zero. Swapping the x and y values before performing the algorithm puts the
zero in the numerator, and the algorithm works. Just remember to swap them back in the
end! Further, we can easily do some similar swapping to transform any line to be in the first

 10

octant. This simplifies the problem so that we only need to
consider lines with a positive slope less than or equal to one.

There are two kinds of improvements we would like to make to
the naive algorithm:

1. Avoid having to do multiplication for each pixel. A straight line
(or line segment) is the epitome of linearity. It only makes
sense that we should be able to traverse a line using only
repeated addition.

2. Perform some sort of antialiasing. Our output space has finite
resolution, but we can make lines less jagged. The examples
to the right show the difference. Above is using the naive
algorithm, with no antialiasing. Below is the expected
output of XiaoLin Wu's algorithm.

Xiaolin Wu's algorithm and other types of antialiasing create a softer line, which can have a
rope-like effect

The main trick behind XiaoLin Wu's algorithm is in an n-bit unsigned integer, called D. This
integer represents the fractional distance of the line from the center of a pixel, measured
on the scale [0, 1), with the integer value representing the maximum distance, 2n − 1 1 − 2−n

.

 11

Before most of the line-drawing can be done, we must calculate the value of d, also an n-bit
unsigned integer, representing the slope of the line. Recall that we have constrained all
lines to a form where the slope fits in the range [0, 1).

At the beginning of drawing a line, D is initialized to the value 0, and the first pixel output
 is already given as input to this function. For the next pixel, to the right of the first,x ,)(0 y0

we consider the column and must determine whether to draw at row or .x0 + 1 y0 y0 + 1
For this, we add d to D and see if the result has resulted in integer overflow. If there has
been integer overflow, then we know that the line is now above the center of the row ,y0 + 1
and we should use that as our new offset.

Computing d requires some division and multiplication, but only once per line. This already
makes the algorithm much faster than our naive one. XiaoLin Wu's algorithm further
exploits some symmetry for even greater efficiency.

First, without requiring any additional computational work, the integer value D can be used
to determine the intensity of each pixel. For the current offset (shown with blue dots
above), the intensity is proportional to the bitwise inverse of D, and for the pixel
immediately above it (shown in green), the intensity is proportional to D. The original paper
and article1 do a great job explaining why.

Finally, the number of fragments generated per cycle is doubled by mirroring the line
across its middle. Each step made from left to right is also made from right to left, in the
opposite direction. The intensity values are shared across this symmetry.

In the end, the algorithm can produce four pixel fragments per cycle. There is little
computational complexity beyond a single addition, so this step can be run at a fairly high
frequency and only take up a small portion of the FPGA.

