
Lab 4: Audio Pipeline on an FPGA

6.375 Fall 2019
Assigned: September 30, 2019

Due: October 7, 2019 11:59PM ET

1 Introduction

In this lab we will run the audio pipeline constructed in the previous labs on an FPGA. Emulating
a hardware design or design-under-test (DUT) on an FPGA achieves much better performance than
software simulation of the design can provide. However, running a non-simulation test bench that
controls the hardware design on an FPGA is another challenge. We introduce connectal as a means
for communication between a host processor (software) and FPGA. Connectal integrates Bluespec
designs with software, allowing us to easily run and test our designs on FPGAs. We first test the
audio pipeline by simulating the processor-FPGA link using connectal. We will then synthesize the
audio pipeline for the FPGA, look at area and timing results, and run the audio pipeline on an
FPGA. Following that we will ask you to make the pitch factor a dynamic parameter passed to the
audio pipeline at run time using the connectal request interface.

1.1 Connectal

Connectal1 consists of a fully-scripted tool-chain and a collection of libraries which can be used
to develop applications composed of software components running on CPUs communicating with
hardware components in FPGAs. Connectal takes in your software written in C/C++ and hardware
written in Bluespec and automatically generates components required for hardware-software com-
munication. In connectal, a virtual communication link between hardware and software is called
a portal, and by convention, we call a portal from SW to HW a request and a portal from HW
to SW an indication. Connectal can build your design for simulation (HW and SW-HW links are
simulated) and for various target FPGAs and physical links (e.g., PCIe, AXI).

��������	
��

���������	

������������������

�������������

���������

������
�
���������

������������

�����������	�
�

��������

���	��������

���������	�
�

�
��������

���������

�
�
�
�
�
�
��

�
	

�
�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

��
�
��
�
��
�
�

�
�
�
�
�
�
�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

�

�

�

��
�
��
�
��
�
�

	

�
��

��������	

��������	
�����

����������

�������
���������������� �����������

�������
����������

���� ������

Figure 1: Audio Pipeline with Connectal

Figure 1 shows how the test environment looks using connectal to pass the samples from the
host processor to the FPGA and back. The mkAudioPipeline module becomes our design under
test (DUT). mkMyDut is a wrapper around our DUT which hooks it up to the auto-generated con-
nectal request and indication interfaces. mkMyDUT also instantiates a reset generator to soft-reset
mkAudioPipeline. Samples are sent by a C++ function putSampleInput of the generated request
proxy that is translated to a hardware method of the request sub-interface of MyDut. Samples coming
out of the audio pipeline will be sent back to software by calling an indication method returnOutput

in hardware which eventually calls a call-back function returnOutput defined in software.

1https://github.com/cambridgehackers/connectal, http://www.connectal.org

1

https://github.com/cambridgehackers/connectal
http://www.connectal.org

In this lab, we use Xilinx VC707 FPGA evaluation boards2 and they are connected to our
course machines via PCIe links. Connectal automatically generates all the components for PCIe
communication and package them with myMyDut to build an FPGA image for VC707.

For our audio pipeline to work with connectal, we do not need to change the audio pipeline code
from the previous lab. What we do is wrap the audio pipeline in mkMyDut (MyDut.bsv) and replace
mkTestDriver with a new test bench written in C++ (connectal test.cpp) running on the host
processor which sends and receives samples through connectal portals.

1.2 Getting Started

The additional infrastructure needed to use connectal for communication between the host computer
and FPGA is provided in the lab4 harness. Also, the details on course machines have been updated,
please refer to the course website – Resources.

Update your local repository with this new infrastructure. Add the 6.375 course locker, source
the setup script, navigate to the directory containing the audio/ from the previous labs, and run:

$ tar xf /mit/6.375/lab2019f/lab4-harness.tar.gz

This will create a directory called audio/connectal with some new files for using connectal in
both simulation and on the FPGA. To save the changes to your local repository, run

$ git add audio/connectal

$ git commit -m "lab4 initial checkin"

The connectal/ directory contains a number of files. Read the description below and the content
of the files carefully before moving on:

Makefile describes a connectal project. It defines the names of the SW-HW interfaces for auto-
generation. The clock speed for the project is specified using --mainclockperiod flag in
nanoseconds. The default Makefile will try to build your design to run at 66.67 MHz (T=15ns).

MyDut.bsv implements the connectal wrapper around mkAudioPipeline. The wrapper module is
mkMyDut whose interface type is MyDut. In the interface MyDut, it has a sub-interface named
request whose type is MyDutRequest.

The MyDutRequest interface defines a list of methods that can be called by software. These
method cannot use custom types for arguments but only Bit#(n) types. n is usually 16 and/or
32 (mapped to uint16 t/uint32 t data types in C++) and connectal parses the bit-widths to
generate the proxy functions (each has corresponding request method) for software.

MyDut.bsv also defines an interface MyDutIndication. This interface defines a list of methods,
each of which has a corresponding call-back function in software. Indication methods can only
use Bit#(n) types for arguments. Our wrapper module mkMyDut takes in a MyDutIndication

inferface as an argument and name it indication. Connectal automatically generates and
provides this interface to mkMyDut during compilation. In mkMyDut, one can invoke the software
call-back functions using indication and its methods.

connectal test.cpp implements the software test bench. It has the same functionality as the test
bench we have been using so far. It reads in.pcm, sends the samples through the audio pipeline
and records the transformed samples to out.pcm.

All the methods that are defined in the Bluespec MyDutIndication interface must be defined
as members of C++ MyDutIndication class. If methods have arguments, connectal maps it
to uintXX t (e.g., uint16 t/uint32 t) types depending on bit-widths defined in Bluespec.
Hardware request methods can be called using device, an instance of MyDutRequestProxy.

When running software, a separate thread is generated to invoke indication functions. Thus,
shared variables between the main thread (the one sends requests) and the indication thread
must be properly protected using mutexes.

2https://www.xilinx.com/products/boards-and-kits/ek-v7-vc707-g.html

2

https://www.xilinx.com/products/boards-and-kits/ek-v7-vc707-g.html

2 Simulating with Connectal

We introduced connectal so we can run our design on an FPGA instead of just simulating it in soft-
ware, but it is still extremely useful to simulate the design using the same connectal infrastructure.
This allows us to see the output of $display calls in our design and lets us avoid the long synthesis
times needed to synthesize the design for the FPGA when we are still debugging the functionality
of the design.

To use connectal we have split our system into two distinct pieces, the software test bench and
the hardware audio pipeline. The only interaction between the test bench and audio pipeline is
through the connectal bridge. In simulation we will still have those two distinct pieces, only instead
of running on an actual FPGA, we simulate the audio pipeline using a Bluesim process on our
computer separate from the test bench software. The bridge between those two processes is a linux
socket instead of PCIe.

Problem 1: Simulate the audio pipeline with the connectal infrastructure by taking the following
steps in the connectal/ directory.

1. Copy over our test input to the local directory.

connectal$ cp ../data/mitrib.pcm in.pcm

2. Build the simulation.

connectal$ make -j8 simulation

3. In the generated bluesim/bin/ directory, two files ubuntu.exe and bsim, which represent
the software and hardware, respectively, are generated. The software executable ubuntu.exe

automatically launches bsim so you don’t need to run it explicitly. In the connectal/ directory,
run the simulation using either of the followings.

connectal$ make run_simulation

--- or ---

connectal$ bluesim/bin/ubuntu.exe

Both the print out from software and hardware will show up. This takes about 3-4 minutes
since connectal adds more complexity to the simulation.

4. Verify the output from simulation by comparing it to the result provided for Lab 3.

connectal$ cmp out.pcm ../data/mitrib_pa_2_2.pcm

3 Running on an FPGA

We will now prepare our project to run on an FPGA, Xilinx VC707.

3.1 Adding Synthesis Boundaries

Prior to synthesizing the hardware, we should tell the Bluespec compiler how we want to break up
our design into Verilog modules. By default, the compiler inlines all Bluespec modules, generating
a single flat Verilog module. The synthesis tools determine hierarchy based on the Verilog modules,
so they never see the original Bluespec module hierarchy. This makes debugging timing errors and
anlayzing resource utilizations difficult since we are unable to see the module hierarchy we expect
(e.g., FFT, IFFT, FIR, PitchAdjust) in the synthesis tool reports.

To tell the compiler to not inline a module, use a synthesis pragma. For example, the multiplier
module used by the FIR filter is defined in common/Multiplier.bsv and is annotated with the
synthesis pragma (* synthesize *).

3

(* synthesize *)

module mkMultiplier (Multiplier);

The synthesis pragma tells the Bluespec compiler to generate a separate Verilog file for the
implementation of the module thus annotated. The synthesis tools then recognize it as a distinct
module and will produce reports specific to that module.

3.2 Synthesis Boundaries on Polymorphic Modules

We would like to create synthesis boundaries for all of the components of our pipeline to understand
their individual resource utilizations and timings. The problem is that you can’t add a synthesis
boundary to a polymorphic module because the underlying Verilog language doesn’t support poly-
morphism the way Bluespec does. Instead of placing a synthesis boundary on a polymorphic module,
we must wrap the polymorphic module in a non-polymorphic module specific to the instantiation
we need and put the synthesis boundary around that.

For example, in our audio pipeline we instantiate the mkFFT module with something like:

FFT#(N, ComplexData) fft <- mkFFT();

We can make a specialized FFT in its own synthesis boundary by creating a new module for it.

(* synthesize *)

module mkAudioPipelineFFT(FFT#(N, ComplexData));

FFT#(N, ComplexData) fft <- mkFFT();

return fft;

endmodule

In our audio pipeline we will instantiate mkAudioPipelineFFT instead of the polymorphic mkFFT.

FFT#(N, ComplexData) fft <- mkAudioPipelineFFT();

Now when we synthesize for the FPGA, fft will be listed in the utilization by hierarchy report.

Problem 2: Create synthesis boundaries for your audio pipiline for the following modules: Au-
dioPipeline, FIR, FFT, ToMP, PitchAdjust, FromMP, and IFFT. Use parameters N=8, S=2, and a
pitch factor of 2.0.

3.3 Building Project for FPGAs

We are ready to build our design to run on a Xilinx VC707 FPGA board. Build the project using:

connectal$ make -j8 fpga

This creates a vc707g2 directory3 to build software and hardware for your design. Once the
build completes, the directory size is about 130 MB for this project, so make sure you have enough
space in your Athena account. Never try to add/push contents in this directory to git. Connectal
first reads your design and generates software and hardware components to facilitate the HW-SW
communication. Once all components are generated, connectal builds a software executable. At the
same time, connectal calls the Bluespec compiler to generate Verilog files. Generated verilog files
are located in vc707g2/verilog/. You should see a separate Verilog file for each of your modules of
interest if synthesis boundaries were added correctly. Then, connectal uses the Xilinx tool, Vivado, to
synthesize and place-and-route the design for our FPGAs (VC707). This takes about 30-40 minutes
to complete on the course machines.

Once the build is done, connectal may print out timing violation if it could detect it from the
generated report. Sometimes it misses violation so make sure you read the report described in the
following section. All the generated files and reports are located in vc707g2/bin/.

After the entire build is done, if you want to update software only, you can run (no HW build):

connectal$ make -j8 fpgaUpdateSW
3meaning VC707 connected via PCIe Gen 2

4

3.4 Timing and Resource Analysis

In vc707g2/bin/, the resource utilization is reported in top-post-route-util.txt. The report
hierarchically shows how much of each FPGA resource type is used for each module that Vivado
identifies. You can search for modules that you had synthesis boundaries to see their utilization. If
you see two lines for the same module, use the first one. The second one with parentheses is the
remainder that does not belong to any of the sub-modules (the second belongs to the first).

The top-post-route-timing-summary.txt reports the clocks and timing summary. Our audio
pipeline is clocked by connectal main clock configured to run at 66.67 MHz (set in Makefile). If
you search for connectal main clock in the file, the first occurrence shows you its period (15 ns)
and frequency (66.67 MHz). The second occurrence is in the Intra Clock Table. The second column
reports the total negative slack (TNS) and the third column reports the number of failing endpoints
(TNS Failing Endpoints). If your design has met timing, both columns should be 0. If
your design did not meet timing, search for VIOLATED in the same file. If there are multiple
occurrences, find the one whose preceding lines have connectal main clock as both From and To
Clocks. If your design met timing, search for connectal main clock to find a place where it reports
a max deplay path that uses connectal main clock as both From and To Clocks. Regardless of
being MET or VIOLATED, this part reports the critical path within our audio pipeline design.

If your design does not meet the timing requirement, you need to break up the identified critical
path across multiple cycles. For example, the combinational FFT implementation likely will not
meet timing, so you should use one of your pipelined implementations instead. Repeat the build
process until your design meets timing. Please do not attempt to run the design that did
not meet the timing since bad hardware can cause the course machines to crash.

While connectal generates text-based reports for our convenience, it is possible to open the final
FPGA implementation of your design using Xilinx Vivado GUI to see the reports and implemented
design graphically. If you want to use the GUI tool to see your final design, you can run (optional):

connectal$ vivado vc707g2/bin/top-post-route.dcp &

3.5 Running on an FPGA

Now that you have synthesized your design for the FPGA and the design meets timing constraints,
all that remains is to run it! Generated in the vc707g2/bin/ directory, mkTop.bin.gz is a VC707
FPGA binary image and ubuntu.exe is an executable of software. ubuntu.exe by default loads the
FPGA image to the FPGA when executing, or requires a NOPROGRAM=1 environment variable
to suppress automatic FPGA programming. All the commands needed to program the FPGA and
run software are integrated into Makefile, so you can take a look if interested.

Problem 3: Run your design on an FPGA.

1. After the build is done, log into one of the FPGA servers listed on the course website under
Resources. Because there are a limited number of FPGA servers, you should be careful and
considerate of the other people who want to use the FPGAs. Please log into the FPGA servers
only when you are using the FPGA and log out as soon as you are done using it. Simulation
and FPGA builds should be done on build servers, not on FPGA servers. We have implemented
a lock so that you can use the FPGA exclusively for 2 minutes or until the commands below
complete, whichever is shorter. Note that FPGA programming takes about 20 seconds and
test bench software takes around 10 seconds. If you see a message: “lockfile: Sorry, giving up
on /tmplock/fpgalock”, please retry in a few minutes as another student is holding the lock.

2. In connectal/, program the FPGA and then run software. The first command programs the
FPGA and the second command runs the software without programming the FPGA. Try to
run software multiple times without re-programming the FPGA and see if you get the same
results every time you run. Make sure you have in.pcm in the same directory.

connectal$ make program_fpga

connectal$ make run_fpgaSW

5

3. (Alternative to 2) The following command programs the FPGA and then runs the software
automatically.

connectal$ make run_fpga

4. Verify the output is correct by comparing it to the results you got in simulation.

Because the test bench sends a soft reset to the FPGA every time the test bench start, you
should be able to rerun the test bench repeatedly without reprogramming the board and still get
the correct results.

4 Making the Pitch Factor Dynamic

As your design currently is, the pitch factor used in the audio pipeline is specified statically at
compile time. With the connectal infrastructure we can ask the user for the desired pitch factor at
runtime via software running on the host computer and pass that to our hardware dynamically so
the hardware does not have to be resynthesized to be used with different pitch factors. This part of
the lab asks you to make the pitch factor a dynamic parameter.

Add a register to the mkPitchAdjust module which holds the FixedPoint pitch factor. Initialize
the pitch factor to be Invalid. Don’t allow computation in the mkPitchAdjust module to proceed
until the pitch factor has been set externally. Only allow the pitch factor to be set once, before any
computation is performed, because it is not clear what it means to change the pitch factor in the
middle of a computation. On the next run, registers will be cleared by soft reset, i.e., register values
initialize back to the value specified in mkReg(init_value);

��������	
��

���������	

������������������

�������������

���������

������
�
���������

�������
����������

������������

�����������	�
�

��������

���	��������

���������	�
�

�
��������

���������

�
�
�
�
�
�
��

�
	

�
�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

��
�
��
�
��
�
�

�
�
�
�
�
�
�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

�

�

�

��
�
��
�
��
�
�

	

�
��

��������	

��������	
�����

����������

����	��
�

���������

� ��!������

Figure 2: Connectal setup with Dynamic Pitch Factor

Figure 2 shows what the connectal setup should look like by the end of the lab. We will start by
exposing a new setFactor subinterface of the mkPitchAdjust module to the world outside the audio
pipeline. We’ll then add a request method setFactor in the MyDutRequest so that the software
test bench can pass the pitch factor through it.

4.1 Subinterfaces in Bluespec

Subinterfaces are a nice feature in Bluespec for assembling large designs. Subinterfaces in Bluespec
let you have not only methods in a Bluespec interface, but also other interfaces. These sub interfaces
can then be implemented and accessed separately in a convenient way. For example, we can change
the interface of mkPitchAdjust to a new interface, call it SettablePitchAdjust, which has two
subinterfaces. The first subinterface will be exactly our PitchAdjust interface from the previous
lab. The second interface will be a Put#(FixedPoint) interface which allows us to set the pitch
factor.

6

interface SettablePitchAdjust#(

numeric type nbins, numeric type isize,

numeric type fsize, numeric type psize

);

interface PitchAdjust#(nbins, isize, fsize, psize) adjust;

interface Put#(FixedPoint#(isize, fsize)) setFactor;

endinterface

Each subinterface is given a name used when implementing the subinterface and accessing the
subinterface.

Where before we implemented the PitchAdjust interface in the mkPitchAdjust module with
something like

interface Put request = toPut(infifo);

interface Get response = toGet(outfifo);

we must now distinguish between the PitchAdjust subinterface and the setFactor subinterface.
To implement the SettablePitchAdjust interface, we would instead write something like

interface PitchAdjust adjust;

interface Put request = toPut(infifo);

interface Get response = toGet(outfifo);

endinterface

interface Put setFactor;

method Action put(FixedPoint#(isize, fsize) x) if (...);

...

endmethod

endinterface

We use the interface keyword, followed by the type of the interface without type parameters,
followed by the name of the subinterface. Between that and the endinterface keyword we put the
implementation for that specific subinterface. Notice we already do this for request and response,
which are just subinterfaces of the Server interface in Bluespec.

To access subinterfaces, you specify the name of the subinterface you want to use after a dot.
For example, in our test bench (PitchAdjustTest.bsv), if before we instantiated a module as

PitchAdjust#(8, 16, 16, 16) adjust <- mkPitchAdjust(2, 2);

and call its methods as

adjust.request.put(v);

Now we will instantiate it as

SettablePitchAdjust#(8, 16, 16, 16) pitch <- mkPitchAdjust(2); // module name changed!

and call its methods as

pitch.adjust.request.put(v);

You can also name a subinterface.

SettablePitchAdjust#(8, 16, 16, 16) pitch <- mkPitchAdjust(2);

PitchAdjust#(8, 16, 16, 16) adjust = pitch.adjust;

and call its methods as before

adjust.request.put(v);

7

Notice we instantiate the module first, then use the equality operator in the next line to give a
name to one of its interfaces without instantiating more hardware.

Problem 4: Change your mkPitchAdjust module to implement the SettablePitchAdjust inter-
face as described above. Update the test bench in PitchAdjustTest.bsv for the mkPitchAdjust

module to use this new interface. The mkPitchAdjust module should no longer take the factor as a
module parameter. You will have to set the factor when the test bench starts using the setFactor

subinterface for things to work.

We want to expose the setFactor subinterface inside the audio pipeline to the software test
bench, which means the audio processor interface needs to be expanded too with a setFactor

interface.

FIR

Sample

Chunker

S Sample

OverSampler

N Sample

tocmplx

N

FromMP

ComplexMP

PitchAdjust

N ComplexMP

ToMP

N Complex

FFT

N

IFFT

Complex

frcmplx

N Sample

Overlayer

S Sample

Splitter

N Complex

N ComplexSample

Sample

putSampleInput

getSampleOutput

setFactor

Figure 3: AudioPipeline with setfactor exposed

Problem 5: Change the mkAudioPipeline module to use an interface which exposes the setFactor
of the mkPitchAdjust module to the outside world as shown in figure 3. You can create a new method
or a subinterface in the AudioProcessor interface. Before we can try out the new mkAudioPipeline

module we need to add a new connectal request method for setting the pitch factor from software.

4.2 Adding a Connectal Request Method

Let’s add a connectal request method setFactor that software can invoke. This should call the new
method/subinterface method we created for AudioPipeline to dynamically set the pitch factor.

Problem 6: Change the MyDutRequest interface and implement the new method setFactor:

1. Add the setFactor method in MyDutRequest interface:

method Action setFactor (Bit#(32) factorPkt);

8

2. Implement the new method at the end of the mkMyDut module.

interface MyDutRequest request;

...

method Action setFactor (Bit#(32) factorPkt) if (!isResetting);

// your implementation

// You can use "unpack(factorPkt)" to cast factorPkt to Fixed#(16, 16)

// Actual bits remains the same.

endmethod

endinterface

Note that the argument type of the method is Bit#(32) instead of Fixed#(16, 16). This is
because connectal only supports Bit types for arguments used in HW-SW interfaces that are
actually sent over the physical link, i.e., PCIe. The unpack function casts the Bit representation
into other types used in Bluespec. This does not change 0s and 1s of the physical wires.

Once you add the new setFactor method in the connectal request interface, connectal auto-
matically generates a new proxy function that software can invoke. Now, we have to update the
software to set the pitch factor before it transfers in.pcm.

Before we add lines to software, we have to discuss how to generate 32-bit unsigned integer value
to be used as an argument to the function. The FixedPoint#(16, 16) type in Bluespec expects
the upper 16 bits to be the integer part and the lower 16 bits to be the fractional part. Using this,
we can construct a 32-bit unsigned integer from a double pf:

double pf = ...; // holding pitch factor

uint16_t m_i = (uint16_t)floor(pf);

uint16_t m_f = (uint16_t)(pow(2, 16) * (pd - floor(pf)));

// 32-bit unsigned integer that can be used by software

uint32_t factorPkt = (uint32_t)(m_i << 16) | m_f;

Problem 7: Update your connectal test bench (connectal test.cpp) to accept the pitch factor
dynamically and pass it to your audio pipeline via connectal. Verify the change works both when
simulating connectal, and when running on the FPGA.

1. Add code to get the pitch factor from the test bench argv[1] parameter to the main function.
You can use the function atof to convert the string to a double in C++. You may want to
include stdlib.h and math.h for lab 4.

2. Convert the pitch factor from a double to an unsigned 32-bit integer value (uint32 t) and
send it to hardware using

uint32_t factorPkt = ...;

device->setFactor(factorPkt); // invoke HW method

3. Build the design again for simulation and fpga.

connectal$ make -j8 simulation

connectal$ make -j8 fpga

Please READ your timing report and do not rely on the build command printing the violation.
If you implemented your PitchAdjust in a combinational manner, it is likely that your design
does not meet the timing due to the dynamic pitch factor in hardware. If this is the case,
you have to update your PitchAdjust to be staged, pipelined and/or folded. The slowest clock
allowed is 62.5 MHz (--mainclockperiod 16) if you have difficulty in meeting timings for the
default speed 66.67MHz (--mainclockperiod 15).

9

4. To run the software with an argument AFTER you re-build your project for simulation or
fpga, you can do:

connectal$ ARG1=2.0 make run_simulation # this runs simulation

--- or ---

connectal$ make program_fpga # this re-programs the FPGA

connectal$ ARG1=2.0 make run_fpgaSW # this runs software only

--- or ---

connectal$ ARG1=2.0 make run_fpga # this programs fpga and then runs software

5 Discussion Questions

1. Report the number of Total LUTs, FFs, and DSP48 used and their percentage in your entire
design (mkPcieTop) after making the pitch factor dynamic. Report the Total LUTs, FFs, and
DSP48 used and their percentage by each of the AudioPipeline, FIR, FFT, ToMP, PitchAdjust,
FromMP, and IFFT modules.

2. Report the length of the critical path of your audio pipeline. Can you tell where in the design
your critical path is?

3. Did you run into any problems using the FPGA?

4. What advantages are there to using subinterfaces in an interface instead of just using methods?

5. If you try to synthesize the audio pipeline with a 32 point FFT, you’ll see it doesn’t fit on the
FPGA. Ideally we could use a 1024 point FFT and still maintain the target rate of processing
44100 samples per second. Using the circular pipeline for the FFT, it would take 10 cycles to
calculate the FFT of 1024 samples. At 50 Mhz this means the FFT supports a throughput
of 1024/10 ∗ 50, 000, 000 = 5, 120, 000, 000 samples per second, which is much greater than
the 16 ∗ 44100 = 705600 samples per second our application requires the FFT to support
assuming we have an overlap of N/S = 16. Also, with a 1024 point FFT, the input vector is
whopping 1024 ∗ (2 ∗ (2 ∗ 16)) = 65536 bits wide. Given our design of the FFT has a much
higher throughput than we need and an excessively large input width, how could we change
our implementation of the FFT to both fit on the FPGA using 1024 points and still meet our
required sample rate? Would the rest of the audio pipeline have to change to support this as
well?

6 What to Turn In

When you have completed the lab you should check in a final version via git. This should include
the pipeline updated with dynamic pitch factor and answers to the discussion questions in a file
called lab4 in the answers directory. For example

audio$ git add -u .

audio$ git add answers/lab4

audio$ git commit -m "Lab 4 submission"

audio$ git push

10

	Introduction
	Connectal
	Getting Started

	Simulating with Connectal
	Running on an FPGA
	Adding Synthesis Boundaries
	Synthesis Boundaries on Polymorphic Modules
	Building Project for FPGAs
	Timing and Resource Analysis
	Running on an FPGA

	Making the Pitch Factor Dynamic
	Subinterfaces in Bluespec
	Adding a Connectal Request Method

	Discussion Questions
	What to Turn In

