
Lab 5: RISC-V Processors 6.375 Complex Digital Design – Fall 2019

Lab 5: RISC-V Processors

Due date: Monday October 21st 11:59:59pm EST

In this lab you will implement five different pipelined R32I1 RISC-V processors in Bluespec. Based on a
working MultiCycle processor as a starting point, you will work on two-stage RISC-V pipelines and three-
stage RISC-V pipelines. Each processor will run various software tests and benchmarks in simulation and/or
on the FPGA.

1 The Processor Infrastructure

A large amount of work has already been done for you in setting up the infrastructure to run, test, evaluate
performance, and debug your RISC-V processor in simulation and on the FPGA.

1.1 Initial Code

Add the 6.375 course locker, source the setup script, navigate to your git repository which contains the
audio/ folder from the previous labs, and run

$ tar xf /mit/6.375/lab2019f/lab5-harness.tar.gz

The code provided for this lab has three directories in it:

• programs/ contains RISC-V programs in assembly and C.
• connectal/ contains the infrastructure for compiling and simulating the processors.
• src/ contains BSV code for the RISC-V processors.
• bolib/ contains library of BSV objects used for the RISC-V processors

Within the BSV source folder, there are folders src/types/ and src/proclib which contain the BSV
code for all the modules used in the RISC-V processors. You will not need to change these files for this lab.
These files are briefly explained in Table 1.

Folder Filename Description
types MemTypes.bsv Common types relating to memory.

ProcTypes.bsv Common types relating to the processor.
Types.bsv Common types.

proclib BTB.bsv Implementation of a Branch Target Buffer.
CsrFile.bsv Implementation of CSRs (including mtohost, which communicates with the

host machine).
Ehr.bsv Implementation of EHRs as described in the lectures.
Exec.bsv Implementation of the instruction execution.

MemInit.bsv Modules for downloading the initial contents of instruction and data mem-
ories from the host PC.

MemorySystem.bsv Instantiation of I-Cache and D-Cache connected to WideMem.
MemUtil.bsv A collection of useful modules and functions about DDR3 and WideMem.
Reg6375.bsv Registers for 6.375
RFile.bsv Implementation of the register file.

Scoreboard.bsv Implementation of the counter-based scoreboards.

Table 1: BSV source code description

1

Lab 5: RISC-V Processors 6.375 Complex Digital Design – Fall 2019

Host

TestBench

FPGA(Xilinx VC707)

RISC-V
Core

4KB
I-Cache

4KB
D-Cache

1GB
DDR3
RAM

Connectal Wrapper

softReset

hostToCPU

cpuToHost

memInit

PCIe LinkSoftware hardware

Figure 1: The Processor Test Setup

1.2 The Setup

Figure 1 shows the setup for the lab. When designing and debugging a processor, we will often need the
help of another processor, which we call the host processor (labeled “Host” in Figure 1). To differentiate it
from the host, we may refer to the processor you’ll be designing (labeled “RISC-V Core” in Figure 1) as the
target processor. The setup instantiates the processor from the specified processor BSV file and Connectal
ports for the processor’s softReset, hostToCpu, cpuToHost, memInit.

For each program run, we will first reset the RISC-V core using softReset, and load the memory with
programs using memory initialization files (riscv files introduced in Section 3.1). Then we will direct the
RISC-V core to begin the program. We will repeat this process for each program run.

The Memory Subsystem

Figure 1 also shows the memory subsystem of the processor which contains a 4KB Instruction Cache and
4KB Data Cache connected to a 1GB DDR3 DRAM. We have provided you this memory subsystem in
Bluespec, which your processors connect to.

Components Capacity Description

Cache 4KB
Direct Mapped Cache
Non-blocking (able to accept new requests) for cache hits;
Blocking (unable to accept new requests) for cache misses .

DDR3 DRAM 1GB 80-cycle access latency

Table 2: Memory Subsystem Property

The components of the memory subsystem have the properties shown in Table 2. It is important to
keep in mind these properties because they will impact the performance of the benchmarks running on your
processors.

2 Build the Processor

In this lab you will work on several versions of a processor, which are defined in TwoStageEhr.bsv, TwoStageRedir.bsv,
TwoStageBtb.bsv, ThreeStage.bsv and ThreeStageBypass.bsv. To build a processor for simulation, say
MultiCycle.bsv, run in lab5/ directory:

lab5$ make build_bluesim VPROC=MULTICYCLE

1RV32I is the base integer 32-bit variant Instruction Set Architecture (ISA).

2

Lab 5: RISC-V Processors 6.375 Complex Digital Design – Fall 2019

This will create a new folder bluesim and the compilation may take a minute or two. To remove this
directory for clean rebuilding, you can run:

lab5$ make clean

You may want to clean up the project between every processor build. The reason is that if you compiled
for MultiCycle successfully and then compile for TwoStage, but your two-stage compilation fails at type
checking, there is a chance that the build script just proceeds and the resulting output for TwoStage is for
the MultiCycle because the TwoStage never managed to compile.

You can also build a processor for the course FPGA (Xilinx VC707 Board) by running

lab5$ make build_vc707g2 VPROC=<MULTICYCLE|...>

This will take a long time (>1hr) and you might need several modifications in your designs to meet the
timing constraint. You will only need to use the FPGA for the last section of this lab.

3 Processor Software Test Bench

The program directory contains RISC-V programs to test the processor for correctness and performance.

Assembly Tests

The programs/assembly/src directory contains source code for assembly tests.

Filename Description
simple.S Contains the basic infrastructure code for assembly tests and runs 100 NOP instructions.

bpred_bht.S Contains many branches that a branch history table can predict well.
bpred_j.S Contains many jump instructions that a branch target buffer can predict well.

bpred_ras.S Contains many jumps via registers that a return address stack (RAS) can predict well.
cache.S Tests a cache by writing to and reading from addresses that would alias in a smaller memory.
<inst>.S Tests a specific instruction.

Table 3: Assembly Test source code description

Each assembly test will print the cycle count, instruction count, and whether the test passes or fails. An
example output for simple.riscv.vmh on a MultiCycle processor is

814

103

PASSED

The first line is the cycle count, the second line is the instruction count, and the last line shows if the test
passes. The instruction count is larger than the cycle count because we read the instruction count CSR
(instret) after reading the cycle count CSR (cycle). If the test fails, the last line will be

FAILED exit code = <failure code>

You can use the failure code to locate the problem by looking into the source code of the assembly test.

It is highly recommended that you re-run all the assembly tests after making any changes to your processor
to verify that you didn’t break anything. When trying to locate a bug, running the assembly tests will narrow
down the possibilities of problematic instructions.

Benchmarks

We provide two sets of benchmarks of different data sizes.

3

Lab 5: RISC-V Processors 6.375 Complex Digital Design – Fall 2019

Benchmark Description Input Data Size
towers.c Tower of Hanoi. 7 Discs
median.c 1-D three element median filter One 256-element int array

multiply.c Software multiplication Two 128-element int arrays
qsort.c Quicksort on One 256-element int array
vvadd.c Vector-vector addition Two 128-element int arrays

Table 4: Small Benchmark source code description

Benchmark Description Input Data Size
median.c 1-D three element median filter One 10240-element int array

multiply.c Software multiplication Two 5120-element int arrays
qsort.c Quicksort on One 10240-element int array
vvadd.c Vector-vector addition Two 5120-element int arrays

Table 5: Big Benchmark source code description

programs/smallbenchmarks directory contains source code for benchmark programs whose working sets
fit in the 4KB cache (Table 4).

programs/bigbenchmarks directory contains source code for benchmark programs whose working sets
exceed the 4KB cache (Table 5).

Each benchmark will print its name, the cycle count, the instruction count, the return value, and whether
it passes or fails. An example output for the towers benchmark on a MultiCycle processor is

-- benchmark test: towers --

Benchmark tower

Cycles = 59016

Insts = 6096

Return 0

PASSED

If the benchmark passes, the last two lines should be Return 0 and PASSED. If the benchmark fails, the last
line will be

FAILED exit code = <failure code>

Performance is measured in instructions-per-cycle (IPC), and we generally want to increase IPC. For our
pipeline we can never exceed an IPC of 1, but we should be able to get close to it with a good branch
predictor and proper bypassing.

3.1 Compiling the Assembly Tests and Benchmarks

Our test bench runs RISC-V programs specified in riscv binary (*.risv) format.

A Makefile is provided under each directory for generating programs in the .riscv format. Compile all
the assembly tests by running the following:

lab5$ cd programs/assembly

assembly$ make -j8

This will create a new directory, programs/build/assembly, which contains compilation results for all
assembly tests. The directory contains the following subdirectories,

• bin/ contains all the .riscv files, which will be used during processor memory initialization.
• dump/ contains all the dumped assembly codes.

Similarly, go to the programs/<smallbenchmarks|bigbenchmarks> folders directly and run the make

command in the respective folder to compile all benchmarks. The compilation results will be in

4

Lab 5: RISC-V Processors 6.375 Complex Digital Design – Fall 2019

programs/build/<smallbenchmarks|bigbenchmarks> directories.

3.2 Using the Test Bench

Our test bench is software running on the host processor which interacts with the RISC-V processor using
Connectal as shown in Figure 1. The test bench starts the processor and handles toHost requests until the
processor indicates it has completed, either successfully or unsuccessfully. For example, the cycle count in the
test output are actually toHost requests from the processor to print an integer, and the requests are handled
by the test bench by printing the integer out. The last line (i.e. PASSED or FAILED) of the test output is
also printed out by the test bench based on the toHost request which indicates the end of processing.

To run the test bench, first build the project as described in Section 2 and compile the RISC-V programs
as described in Section 3.1. In simulation, our RISC-V processor always loads the file program to initialize
the memory.

For example, to run the median benchmark on the processor in simulation you could use the commands
from the top directory:

lab5$ ln -sf programs/build/smallbenchmarks/bin/median.riscv program

lab5$./bluesim/bin/ubuntu.exe 1>log

This creates a file log that contains the trace of your execution.

For your convenience, we have provided scripts run_sw.sh, which run all the assembly tests and bench-
marks automatically. The standard output (stdout) will be redirected to logs/<test name>.log.

3.2.1 Test bench output

There are two sources of outputs from RISC-V simulation. These include BSV $display statements (both
messages and errors) and RISC-V print statements.

BSV $display statements are printed to stdout by bsim_dut. BSV can also print to standard error
(stderr) using $fwrite(stderr, ...) statements. The scripts run_tests.sh redirects the stdout to the
logs/<test name>.log file.

RISC-V print statements (e.g., printChar, printStr and printInt functions in
programs/benchmarks/common/syscall.c) are handled through moving characters and integers to the
mtohost CSR. The test bench reads from the cpuToHost interface and prints characters and integers to
stderr when it receives them. The messages from stderr show up on your screen together with messages
from stdout, but they are not logged into a file.

4 Evaluating Processor Designs

In this lab, we will work on six processor designs which include the MultiCycle processor. Once your
processor passes all assembly tests, you can evaluate your processor design. For each processor you will
analyze processor’s circuit by synthesizing the processor using yosys. You will also run small benchmark
software on the processor in simulation to evaluate the processor.

We have prepared an Excel worksheet (lab5.xlsx) on which you will fill the evaluation data of each
processor design.

4.1 Synthesize the Processors

You can synthesize your processor by running:

lab5$ synth src/[processor_bsv_filename] mkProc -p src:src/proclib:bolib/ -l multisize

This will report the critical path delay, and area of your circuit. Please note that there are two metrics for
the area, and we will only use the “Area (excluding the memory)” for the evaluation data.

5

Lab 5: RISC-V Processors 6.375 Complex Digital Design – Fall 2019

4.2 Instructions Per Cycle

Processor performance is often measured in instructions per cycle (IPC). This metric is a measure of through-
put, or how many instructions are completed per cycle on average. IPC is computed by dividing a number
of instructions by how many cycles it took to execute those instructions. A MultiCycle processor will require
several cycles to complete a instruction therefore its IPC is smaller than 1.0. DRAM latency penalty due to
cache misses will further decrease IPC of MultiCycle.

Improving IPCs of a processor towards 1.0 would require pipelining the processor, and other various
architectural techniques such as better branch predictions.

5 Multi-Cycle Processor

The provided code, src/MultiCycle.bsv, implements a three-cycle RISC-V processor connected to realistic
memory, which has a request/response interface. That is, to read from the memory, you use the request
method and in a later cycle, the response method will be ready and can be read by firing the response
method. (Latency insensitive)

Exercise 1 (5 points): Build the MultiCycle processor for simulation, and run assembly test and small
benchmarks on the processor. Fill in the MultiCycle column of lab5.xlsx with the data you observed, and
calculate the IPCs for each benchmark.

lab5$ make build_bluesim VPROC=MULTICYCLE

lab5$./run_sw.sh

Synthesize your processor by running:

lab5$ synth src/MultiCycle.bsv mkProc -p src:src/proclib:bolib/ -l multisize

Discussion Question 1 (10 points): What is the critical path (starting point, end point) of your Multi-
Cycle Processor?

6 Two-Stage Pipelined Processor

6.1 Fixing the Two-Stage Pipelined Processor using EHR

TwoStage<Ehr|Redir>.bsv contain an implementation of a functional two-stage pipelined processor that
correctly handles control hazards, but it is not properly pipelined.

The reason the processor is not properly pipelined is because the doFetch and doExecute rules conflict,
so they cannot run in the same cycle.

Discussion Question 2 (5 points): Why do rules doFetch and doExecute conflict?

To resolve the rule conflict, you can simply uses Ephemeral History Registers (EHR) for pc and epoch.

Exercise 2 (20 points): Fix the two-stage pipelined processor (TwoStageEhr.bsv) by using EHRs. Fill
in the TwoStageEhr column of lab5.xlsx with the data you observed, and calculate the IPCs for each
benchmark.

Run the following to test your processor

lab5$ make build_bluesim VPROC=TWOSTAGEEHR

lab5$./run_sw.sh

Note: Please run make clean between different processor designs as explained in Section 2.

6

Lab 5: RISC-V Processors 6.375 Complex Digital Design – Fall 2019

Synthesize your processor by running:

lab5$ synth src/TwoStageEhr.bsv mkProc -p src:src/proclib:bolib/ -l multisize

Discussion Question 3 (10 points): How does the critical-path delay compare with MultiCycle processor?
What is the critical path (starting point, end point) of your TwoStageEhr processor.

6.2 Fixing the Two-Stage Pipelined Processor using Rule Splitting

You can also fix the Two-stage processor by splitting the conflicting part of rule doExecute into rule
doRedirection, such that:

• Rule doExecute saves the misprediction condition and redirected PC in two registers.
• Rule doRedirection is executed only if the saved misprediction condition is true, and it updates the
pc and epoch registers.

Exercise 3 (20 points): Fix the two-stage pipelined processor (TwoStageRedir.bsv) by splitting the
conflicting part of rule doExecute into rule doRedirection. Fill in the TwoStageRedir column of lab5.xlsx
with the data you observed, and calculate the IPCs for each benchmark.

Run the following to test your processor

lab5$ make build_bluesim VPROC=TWOSTAGEREDIR

lab5$./run_sw.sh

Note: Please run make clean between different processor designs as explained in Section 2.

Synthesize your processor by running:

lab5$ synth src/TwoStageRedir.bsv mkProc -p src:src/proclib:bolib/ -l multisize

Discussion Question 4 (10 points): How do the IPCs of small benchmarks compare with TwoStageEhr?
Why do IPCs increase/decrease compared with TwoStageEhr? Which is the critical path? How does the
critical path compare with TwoStageEhr?

6.3 Next Address Prediction

Now, let’s use a more advanced next address predictor. One such example is a branch target buffer (BTB).
It predicts the location of the next instruction to fetch based on the current value of the program counter
(the PC). For the vast majority of instructions, this address is PC + 4 (assuming all instructions are 4
bytes). However, this isn’t true for jumps and branches. So, a BTB contains a table of previously-used next
addresses (“branch targets”) that were not simply PC+4, and the PCs that generated those branch targets.

BTB.bsv contains an implementation of a BTB of 2logn entries. Its interface has two methods: predictedNextPC
and train.

interface NAP#(numeric type logn);

method Word predictedNextPC(Word pc);

method Action train(Word pc, Word nextPC);

endinterface

• The method predictedNextPC takes the current PC and it returns a prediction.
• The method train takes a program counter and the next address for the instruction at that program

counter and adds it as a prediction if it is not PC+4.

The predictedNextPC method should be called to predict the next PC, and the update method should
be called after a branch resolves. The execution stage requires both the PC of the current instruction and
the predicted PC to resolve branches, so you need to store this information in a pipeline register or FIFO.

Exercise 4 (20 points): Copy your working TwoStageRedir.bsv to TwoStageBtb.bsv, and add a properly-
sized BTB to the processor(TwoStageBtb.bsv). Fill TwoStageBtb column in lab5.xlsx with the data you

7

Lab 5: RISC-V Processors 6.375 Complex Digital Design – Fall 2019

observed, and calculate the IPCs for each benchmark.

Run the following to test your processor

lab5$ make build_bluesim VPROC=TWOSTAGEBTB

lab5$./run_sw.sh

Note: Please run make clean between different processor designs as explained in Section 2.

Synthesize your processor by running:

lab5$ synth src/TwoStageBtb.bsv mkProc -p src:src/proclib:bolib/ -l multisize

Discussion Question 5 (10 points): What is the size of your BTB? After adding the BTB, how do the
IPCs compare with TwoStageRedir? Will adding a BTB to the TwoStageEhr design help its IPC? Explain
why.

7 Three-Stage Pipelined Processor

7.1 Fixing the Three-Stage Pipelined Processor

To improve the two-stage design, let’s implement a three-stage pipelined processor with following stages:

• The Fetch stage initiates a instruction memory read request and sets the PC to the predicted next-PC
value (PC+4).

• The Decode stage decodes the fetched instruction and reads its source operands from the register file.
• The Execute stage executes the instruction, reads or writes to the data memory and updates the register

file as needed.

This design is like the one described in Lecture 12. Unfortunately, since the Decode and Execute stages
can execute concurrently, there can be a data hazard in this processor pipeline: the Decode stage can read
a stale value from the register file, which has not been yet updated by an earlier instruction that is still in
the Execute stage.

One can resolve this data hazard by tracking all outstanding register file writes into a hardware structure
called a Scoreboard, and stalling the Decode stage when the index of one of the source registers is found in
the scoreboard. When an instruction writes to the register file, the item should be removed from scoreboard,
and the Decode stage can then proceed.

The Scoreboard has the following interface:

interface Scoreboard#(numeric type size);

method Action insert(Maybe#(Bit#(5)) dst);

method Action remove(Maybe#(Bit#(5)) dst);

method Bool search1(Maybe#(Bit#(5)) src1);

method Bool search2(Maybe#(Bit#(5)) src2);

endinterface

• size is the number of outstanding register write indices that the Scoreboard can hold.
• method insert inserts a destination register index into Scoreboard. An Invalid dst is treated as a

NOP on the register file write. Each Valid or Invalid dst occupies a slot in the Scorebard and a
search for an Invalid dst will return False.

• method remove removes the an outstanding register write index dst from Scoreboard.
• methods search1 and search2 will match src register indices with a Valid register index stored in

the Scoreboard, and returns True if a match is found. A search for register 0 is always False.

ThreeStage.bsv contains a non-functional three-stage pipelined processor that does not handle hazards
correctly. Specifically, the code in ThreeStage.bsv has three issues:

1. Rule doDecode does not have the necessary logic to stall the Decode stage on a data hazard. In rule

8

Lab 5: RISC-V Processors 6.375 Complex Digital Design – Fall 2019

doDecode, a new instruction inst from iMem (Instruction Memory) should not be processed in case the
previous instruction had stalled. Due to the request-response interface of iMem: once iMem.resp() is
called, the value it returns is not available in iMem anymore—subsequent iMem.resp() calls return the
data for subsequent load requests. Therefore, if doDecode needs to stall (due to a data hazard), it needs
to save the fetched instruction in fetchedInst to avoid losing it. Consequently after stall, doDecode
should use the instruction previously saved into fetchedInst register instead of calling iMem.resp().

2. Rules doExecute and doLoadWait do not have the necessary logic to remove the oldest item from the
Scoreboard in the Execute stage when an instruction finishes execution. Specifically, these rules should
call sb.remove in the following two cases:

• For an instruction with Valid dst, sb.remove and rf.wr should be called atomically, which
would be guaranteed if they were called together in the same rule.

• For an instruction on the wrong path of execution (i.e., a mispredicted instruction), sb.remove
should also be called.

3. Finally, rules doFetch and doExecute conflict just like they did in the two-stage pipelined processor
(and this conflict can be fixed in the same way).

Exercise 5 (20 points): Fix the three issues in ThreeStage.bsv. Fill in the ThreeStage column of
lab5.xlsx with the data you observed, and calculate the IPCs for each benchmark.

Hint: You can first attempt to fix the first two issues which will get you a functionally correct processor.

Run the following to test your processor

lab5$ make build_bluesim VPROC=THREESTAGE

lab5$./run_sw.sh

Note: Please run make clean between different processor designs as explained in Section 2.

Synthesize your processor by running:

lab5$ synth src/ThreeStage.bsv mkProc -p src:src/proclib:bolib -l multisize

Discussion Question 6 (10 points): How do IPCs compare with TwoStageRedir? How does the critical-
path delay compare with TwoStageRedir

7.2 Improve the Three-Stage Pipelined Processor using Bypassing

Data hazards can be resolved by adding bypass paths from later pipeline stages to earlier stages. We can
use a bypass register file, which wr is scheduled before rd, i.e., the effect of write will be observed by read
in the same clock cycle. When bypassing a register file, a Scoreboard module of either mkScoreboard

or mkBypassingScoreboard. is also needed to remove data hazards appropriately. Please read the rule
schedules of those modules in the comment of Scoreboard.bsv.

Exercise 6 (20 points): Copy your working ThreeStage.bsv to ThreeStageBypass.bsv, and improve
it using bypassing. Fill in the ThreeStageBypass column of lab5.xlsx with the data you observed, and
calculate the IPCs for each benchmark.

Hint: This will only require you to change a couple of module instantiations without major code change.

Run the following to test your processor

lab5$ make build_bluesim VPROC=THREESTAGEBYPASS

lab5$./run_sw.sh

Note: Please run make clean between different processor designs as explained in Section 2.

Synthesize your processor by running:

lab5$ synth src/ThreeStageBypass.bsv mkProc -p src:src/proclib:bolib -l multisize

9

Lab 5: RISC-V Processors 6.375 Complex Digital Design – Fall 2019

Discussion Question 7 (10 points): How do the IPCs of the bypassed Three-stage processor compare
with ThreeStage without bypass? How does the critical-path delay compare with your Three-stage pipelined
processor without bypassing?

8 Running Large Programs

Your processor can also run larger programs than the small benchmarks we have been using. Unfortunately,
these larger programs take longer to run, and in many cases, it will take too long for simulation to finish.
Now is a great time to try FPGA synthesis. By implementing your processor on an FPGA, you will be able
to run these large programs much faster since the design is running in hardware instead of software.

8.1 Synthesizing for FPGA

You can build any processor in this lab for an FPGA (Xilinx VC707 Board) by running

lab5$ make build_vc707g2 VPROC=...

This command will take a lot of time (about one hour) and a lot of computation resources. You will
probably want to select a bdbm server that is under a light load.

8.2 Running on FPGA

Before running on an FPGA, please make sure that your design has met timing by checking the timing
report, vc707g2/bin/top-post-route-timing-summary.txt. Log onto one of the FPGA servers listed in
the Resources section of the course website. Run the following to run benchmarks on the FPGA.

lab5$./fpgarun_sw.sh

fpgarun_sw.sh will first program the FPGA and then run various software on your processor.

Exercise 7 (20 Points): Synthesize the Three-Stage processor for the FPGA, and run big benchmarks on
the processor.

lab5$ make build_vc707g2 VPROC=THREESTAGEBYPASS

lab5$./fpgarun_sw.sh

Discussion Question 8 (10 points): What are the IPCs of the Three-stage processor for big bench-
marks? How do they compare with their corresponding small benchmarks? Explain the changes of IPCs
against small benchmarks.

9 Submission

We only need your processor designs in src/, discussion answers and a complete lab5.xlsx for this lab. If
you have added any new files related to your processors you also need to include them in your submission.

Check in your code for the lab5:

lab5$ git add src/*

lab5$ git add lab5.xlsx

lab5$ git add discussion.txt

--- Add any new file that you created for the processors ---

lab5$ git status # make sure your lab files are added

lab5$ git commit -m "Lab 5 submission"

lab5$ git push

10

	The Processor Infrastructure
	Initial Code
	The Setup

	Build the Processor
	Processor Software Test Bench
	Compiling the Assembly Tests and Benchmarks
	Using the Test Bench
	Test bench output

	Evaluating Processor Designs
	Synthesize the Processors
	Instructions Per Cycle

	Multi-Cycle Processor
	Two-Stage Pipelined Processor
	Fixing the Two-Stage Pipelined Processor using EHR
	Fixing the Two-Stage Pipelined Processor using Rule Splitting
	Next Address Prediction

	Three-Stage Pipelined Processor
	Fixing the Three-Stage Pipelined Processor
	Improve the Three-Stage Pipelined Processor using Bypassing

	Running Large Programs
	Synthesizing for FPGA
	Running on FPGA

	Submission

