
Combinational Circuits in
Bluespec

Arvind
Computer Science & Artificial Intelligence Lab

Massachusetts Institute of Technology

September 6, 2019 http://csg.csail.mit.edu/6.375 L02-1

Ripple-carry adder
§ Cascade FAs to perform binary addition

fa fafa

a3 b3 a2 b2 a1 b1

s3 s2 s1

c3 c2 fa

a0 b0

s0

c1 c0(=0)c4

September 6, 2019 http://csg.csail.mit.edu/6.375 L02-2

Full Adder: A one-bit adder
function fa(a, b, c_in);

t = (a ^ b);
s = t ^ c_in;
c_out = (a & b) | (c_in & t);
result[0] = s;
result[1] = c_out;
return result;

endfunction

Structural code – only specifies
interconnection between boxes

Not quite correct –
needs type annotations

t

September 6, 2019 http://csg.csail.mit.edu/6.375 L02-3

t = aÅb
s = tÅcin

cout = a·b + cin·t

Boolean Equations

Full Adder: A one-bit adder
corrected

function Bit#(2) fa(Bit#(1) a, Bit#(1) b, Bit#(1) c_in);
Bit#(1) t;
Bit#(1) s;
Bit#(1) c_out;
Bit#(2) result;
t = a ^ b;
s = t ^ c_in;
c_out = (a & b) | (c_in & t);
result[0] = s;
result[1] = c_out;
return result;

endfunction

Type declaration
“Bit#(1) a” says
that a is one bit wide

September 6, 2019 http://csg.csail.mit.edu/6.375 L02-4

Full Adder more convenient syntax

function Bit#(2) fa(Bit#(1) a, Bit#(1) b, Bit#(1) c_in);
Bit#(1) t = a ^ b;
Bit#(1) s = t ^ c_in;
Bit#(1) c_out = (a & b) | (c_in & t);
Bit#(2) result;
result[0] = s;
result[1] = c_out;
return result;

endfunction

{c_out,s} represents
bit concatenation; can
be used to avoid
naming intermediate
results

How big is {c_out,s}?

A variable’s type
declaration and
definition can be
combined

return {c_out, s};

September 6, 2019 http://csg.csail.mit.edu/6.375 L02-5

Type checking
§ The Bluespec compiler checks if all the declared

types are used consistently

§ In fact, the compiler can reduce the programmer’s
burden by deducing some types and not asking for
explicit type declarations

3

The compiler will
flag this as an
error because
{c_out, abc[0]} is
Bit#(2)

Þ The “let” syntax

function Bit#(2) fa(Bit#(1) a, Bit#(1) b, Bit#(1) c_in);
Bit#(1) t = a ^ b;
Bit#(1) s = t ^ c_in;
Bit#(1) c_out = (a & b) | (c_in & t);
return {c_out, s};

endfunction

September 6, 2019 http://csg.csail.mit.edu/6.375 L02-6

function Bit#(2) fa(Bit#(1) a, Bit#(1) b, Bit#(1) c_in);
let t = a ^ b;
let s = t ^ c_in;
let c_out = (a & b) | (c_in & t);
return {c_out, s};

endfunction

“let” syntax

“let” syntax is very convenient, we will
use it extensively

Types of t, s and
c_out can be deduced
from the types of the
corresponding right-
hand-side expressions

function Bit#(2) fa(Bit#(1) a, Bit#(1) b, Bit#(1) c_in);
Bit#(1) t = a ^ b;
Bit#(1) s = t ^ c_in;
Bit#(1) c_out = (a & b) | (c_in & t);
return {c_out, s};

endfunction

September 6, 2019 http://csg.csail.mit.edu/6.375 L02-7

2-bit Ripple-Carry Adder
cascading full adders

function Bit#(3) add2(Bit#(2) x, Bit#(2) y);
let s = 2b’00; Bit#(3) c = 3b’000;
c[0] = 0;
let cs0 = fa(x[0], y[0], c[0]);
s[0] = cs0[0]; c[1] = cs0[1];
let cs1 = fa(x[1], y[1], c[1]);
s[1] = cs1[0]; c[2] = cs1[1];

return {c[2],s};
endfunction

Use fa as a
black-box

s has two wires,
initially each s
wire is zero

wire s[0] is
updated
wire s[1] is
updated

fa fa
c[2]

x[1] y[1] x[0] y[0]

c[1]

s[1] s[0]

0

The same as writing
{c[2],s[1],s[0]};

September 6, 2019 http://csg.csail.mit.edu/6.375 L02-8

32-bit Ripple-Carry Adder (RCA)
§ We could have written the chain of RCA explicitly, but we can

also use loops!

function Bit#(33) add32(Bit#(32) x, Bit#(32) y, Bit#(1) c0);
Bit#(32) s = 0;
Bit#(33) c = 0;
c[0] = c0;
for (Integer i=0; i<32; i=i+1) begin

Bit#(2) cs = fa(x[i],y[i],c[i]);
c[i+1] = cs[1];
s[i] = cs[0];

end
return {c[32],s};

endfunction

Now we discuss how the gates are
generated (synthesized) from a loop

September 6, 2019 http://csg.csail.mit.edu/6.375 L02-9

Loop is unfolded by the compiler
for(Integer i=0; i<32; i=i+1) begin

Bit#(2) cs = fa(x[i], y[i], c[i]);
c[i+1] = cs[1];
s[i] = cs[0];

end

cs = fa(x[0], y[0], c[0]);
c[1] = cs[1];
s[0] = cs[0];
cs = fa(x[1], y[1], c[1]);
c[2] = cs[1];
s[1] = cs[0];
...
cs = fa(x[31], y[31], c[31]);
c[32] = cs[1];
s[31] = cs[0];

i = 0

i = 1

i = 31

cs in the loop
body is a local
variable. Hence
each of these cs
refers to a
different value.
We could have
named them cs0,
... cs31.

September 6, 2019 http://csg.csail.mit.edu/6.375 L02-10

Loops to gates

Unfolded loop defines an acyclic wiring diagram

fafa

x[0]y[0]

c[0]

s[0]

x[1]y[1]

c[1]

s[1]

c[2] csfa

x[31]y[31]

s[31]

c[32] c[31]
…

cs0 = fa(x[0], y[0], c[0]); c[1]=cs0[1]; s[0]=cs0[0];
cs1 = fa(x[1], y[1], c[1]); c[2]=cs1[1]; s[1]=cs1[0];
…
cs31 = fa(x[31], y[31], c[31]);

c[32] = cs31[1]; s[31] = cs31[0];

Each instance of function fa is replaced by its body

September 6, 2019 http://csg.csail.mit.edu/6.375 L02-11

Types in Bluespec

September 6, 2019 http://csg.csail.mit.edu/6.375 L02-12

Types
§ Every expression in a Bluespec program has a type
§ A type is a grouping of values, examples

§ Bit#(16) // 16-bit wide bit-vector (16 is a numeric type)
§ Bool // 1-bit value representing True or False
§ Vector#(16,Bit#(8)) // Vector of size 16 containing Bit#(8)’s

§ A type declaration can be parameterized by other
types using the syntax ‘#’, for example
§ Bit#(n) represents n bits, e.g., Bit#(8), Bit#(32), ...
§ Tuple2#(Bit#(8), Integer) represents a pair of 8-bitvector

and an integer.
§ function Bit#(8) fname (Bit#(8) arg) represents a function

from Bit#(8) to Bit#(8) values

§ A type name always begins with a capital letter,
while a variable identifier begins with a small letter

September 6, 2019 http://csg.csail.mit.edu/6.375 L02-13

Type synonyms

typedef Bit#(8) Byte;

typedef Bit#(32) Word;

typedef Tuple2#(a,a) Pair#(type a);

typedef 32 DataSize;

typedef Bit#(DataSize) Data;

type variable

numeric type

September 6, 2019 http://csg.csail.mit.edu/6.375 L02-14

Enumerated types
A very useful typing concept
§ Suppose we have a variable c whose values can

represent three different colors
§ Declare the type of c to be Bit#(2) and adopt the

convention that 00 represents Red, 01 Blue and 10 Green
§ A better way is to create a new type called Color:

§ Bluespec compiler automatically assigns a bit
representation to the three colors and provides a
function to test whether two colors are equal

§ If you do not use “deriving” then you will have to
specify your own encoding and equality function

typedef enum {Red, Blue, Green}
Color deriving(Bits, Eq);

Types prevent us from
mixing colors with raw bits

Why is this way better?

September 6, 2019 http://csg.csail.mit.edu/6.375 L02-15

Parameterized Circuits

September 6, 2019 http://csg.csail.mit.edu/6.375 L02-16

n-bit Ripple-Carry Adder
function Bit#(n+1) addN(Bit#(n) x, Bit#(n) y, Bit#(1) c0);

Bit#(n) s = 0;
Bit#(n+1) c = 0;
c[0] = c0;
for (Integer i=0; i<n; i=i+1) begin

let cs = fa(x[i],y[i],c[i]);
c[i+1] = cs[1];
s[i] = cs[0];

end
return {c[n],s};

endfunction

Unfortunately, there are several subtle type errors in
this program – we will fix them one by one

Now can instantiate different
sized adders by specifying n

September 6, 2019 http://csg.csail.mit.edu/6.375 L02-17

Fixing the type errors

Parameterized Ripple-Carry Adder

§ n is numeric type and Bluespec does not allow
arithmetic on types, e.g., n+1, i<n, c[n] are illegal!

function Bit#(n+1) addN(Bit#(n) x, Bit#(n) y, Bit#(1) c0);
Bit#(n) s = 0;
Bit#(n+1) c = 0;
c[0] = c0;
for (Integer i=0; i<n; i=i+1) begin

let cs = fa(x[i],y[i],c[i]);
c[i+1] = cs[1];
s[i] = cs[0];

end
return {c[n],s};

endfunction

September 6, 2019 http://csg.csail.mit.edu/6.375 L02-18

Fixing the type errors
valueOf(n) versus n
§ Each expression has a type and a value, and these

two come from entirely disjoint worlds
§ n in Bit#(n) is a numeric type variable and resides

in the types world
§ Sometimes we need to use values from the types

world in actual computation. The function valueOf
extracts the integer from a numeric type
§ Thus,

i<n is not type correct
i<valueOf(n)is type correct

September 6, 2019 http://csg.csail.mit.edu/6.375 L02-19

Fixing the type errors
TAdd#(n,1) versus n+1
§ Sometimes we need to perform operations in the

types world that are very similar to the operations
in the value world
§ Examples: Addition, Multiplication, Logarithm base 2, ...

§ Bluespec defines a few special operators in the
types world for such operations
§ TAdd#(m,n), TSub#(m,n), TMul#(m,n), TDiv#(m,n),

TLog#(n), TExp#(n), TMax#(m,n), TMin#(m,n)
§ Thus,

Bit#(n+1) is not type correct
Bit#(TAdd#(n,1)) is type correct

September 6, 2019 http://csg.csail.mit.edu/6.375 L02-20

Parameterized Ripple-Carry Adder
corrected

function Bit#(TAdd#(n,1)) addN(Bit#(n) x, Bit#(n) y,
Bit#(1) c0);

Bit#(n) s = 0;
Bit#(TAdd#(n,1)) c;
c[0] = c0;
let valn = valueOf(n);
for (Integer i=0; i<valn; i=i+1) begin

let cs = fa(x[i], y[i], c[i]);
c[i+1] = cs[1];
s[i] = cs[0];

end
return {c[valn],s};

endfunction

types world
equivalent of n+1

Lifting a type into
the value world

September 6, 2019 http://csg.csail.mit.edu/6.375 L02-21

Instantiating the parametric Adder
function Bit#(Tadd#(n,1)) addN(Bit#(n) x, Bit#(n) y, Bit#(1) c0);

// concrete instances of addN!
function Bit#(33) add32(Bit#(32) x, Bit#(32) y, Bit#(1) c0)

= addN(x,y,c0);

function Bit#(4) add3(Bit#(3) x, Bit#(3) y, Bit#(1) c0)
= addN(x,y,c0);

How do we define a add32, add3 … using addN ?

The numeric type n on the RHS implicitly gets instantiated
to 32 and 3, respectively, because of the LHS declaration

September 6, 2019 http://csg.csail.mit.edu/6.375 L02-22

Bluespec is for describing circuits

§ Bluespec is like a language for drawing pictures of
interconnected boxes

§ Boxes happen to be Boolean gates with inputs and
outputs

§ However, unlike ordinary pictures, our boxes, i.e.,
gates, have computational meaning, and therefore,
we can ask what values a circuit would produce on
its output lines, given a specific set of values on its
input lines

§ Even though the primary purpose of the Bluespec
compiler is to synthesize a network of gates, the
ability to simulate the functionality of the resulting
circuit is extremely important

September 6, 2019 http://csg.csail.mit.edu/6.375 L02-23

Bluespec: Gate synthesis versus
simulation 2-bit adder

§ add2(2’b11, 2’b01) Þ 3’b100
§ add2(2’b01, 2’b01) Þ 3’b010

fa fa

x[1] y[1]

c[2]

s[1]

x[0] y[0]

c[1]

s[0]

c[0]

Caution: In spite of the fact that Bluespec programs,
like programs in other software languages, produce
outputs given inputs, the purpose of Bluespec programs
is to describe circuits

gate
synthesissimulate

function Bit#(3) add2(Bit#(2) x, Bit#(2) y);
let s = 2b’00; Bit#(3) c = 3b’000;
c[0] = 0;
let cs0 = fa(x[0], y[0], c[0]);
s[0] = cs0[0]; c[1] = cs0[1];
let cs1 = fa(x[1], y[1], c[1]);
s[1] = cs1[0]; c[2] = cs1[1];

return {c[2],s};
endfunction

September 6, 2019 http://csg.csail.mit.edu/6.375 L02-24

Compiling Bluespec into circuits

§ Static elaboration: Bluespec compiler eliminates all
constructs which have no direct hardware meaning
§ All data structures are converted into bit vectors
§ Loops are unfolded
§ Functions are in-lined
§ What remains is an acyclic graph of Boolean gates

§ The compiler complains if it detects a cycle in your
circuit

Bluespec
Compiler

Verilog
Compiler

Gate library in a
technology (e.g., 22nm)

Netlist
Technology
independent

gate description
Bluespec
design

Technology independent
Boolean optimizations

Technology dependent
Boolean optimizations

September 6, 2019 http://csg.csail.mit.edu/6.375 L02-25

Takeaway
§ Once we define a combinational circuit, we can use it

repeatedly to build larger circuits
§ Bluespec compiler, because of the type signatures of

functions, prevents us from connecting functions and
gates in obviously illegal ways

§ We can use loop constructs and functions to express
combinational circuits, but all loops are unfolded and
functions are in-lined during the compilation phase

§ We can also write parameterized circuits in Bluespec,
for example an n-bit adder. Once n is specified, the
correct circuit is automatically generated

The best way to learn about types is to try writing a
few expressions and feeding them to the compiler

September 6, 2019 http://csg.csail.mit.edu/6.375 L02-26

