
Complex Combinational
Circuits in Bluespec

Arvind
Computer Science & Artificial Intelligence Lab

Massachusetts Institute of Technology

September 9, 2019 http://csg.csail.mit.edu/6.375 L03-1

Selecting a wire: x[i]

§ Constant selector: e.g., x[2]

§ Dynamic selector: x[i]

[2]
x0
x1
x2
x3

no hardware;
x[2] is just
the name of
a wire

assume x is 4 bits wide

x0
x1
x2
x3

i

[i]
x0
x1
x2
x3

4-way mux
x0
x1
x2
x3

i
0
1
2
3

September 9, 2019 http://csg.csail.mit.edu/6.375 L03-2

A 2-way multiplexer

(p)? b : a ;
Gate-level implementation

A mux is a simple
conditional expression p

a

b

Bluespec
If a and b are n-bit wide
then this structure is
replicated n times; p is
the same input for all the
replicated structures

a

b

p

0

1

True is treated as a 1
and False as a 0

September 9, 2019 http://csg.csail.mit.edu/6.375 L03-3

A 4-way multiplexer

case ({s1,s0})
2’b00 : a;
2’b01 : b;
2’b10 : c;
2’b11 : d;

endcase

n-way mux can be
implemented using n-1
two-way muxes

s0

s0

s1

a

b

c

d

0

1

0

1

0

1

syntax:
writing
0,1,2,3
would have
also worked

(s1==0) & (s0==1),
which is the same
writing ~s1 & s0

September 9, 2019 http://csg.csail.mit.edu/6.375 L03-4

Shift operators

§ Fixed size shift operation is cheap in hardware
– just wire the circuit appropriately

§ Arithmetic shifts are similar

0 0

a b c d

0 0 a b

a b c d

a a a b

useful for
multiplication
and division
by 2n

0 0

1 0 0 1

0 0 1 0

1 0 0 0

1 1 1 0

-8/4

-2

Logical right
shift by 2

September 9, 2019 http://csg.csail.mit.edu/6.375 L03-5

Logical right shift by n

§ Shift n can be broken down into log n steps of
fixed-length shifts of size 1, 2, 4, …
§ The bit encoding of n tells us which shifters are needed;

if the value of the ith (least significant) bit is 1 then we
need to shift by 2i bits

§ For example, we can perform shift 5 (=4+1) by doing
shifts of size 4 and 1. Thus, 8’b01100111 shift 5 can be
performed in two steps:
§ 8’b01100111 Þ 8’b00000110 Þ 8’b00000011

shift 4 shift 1

September 9, 2019 http://csg.csail.mit.edu/6.375 L03-6

Conditional operation: shift
versus no-shift

§ We need a mux to select the appropriate wires:
if s is one the mux will select the wires on the
left (shift) otherwise it would select wires on the
right (no-shift)

s

(s==1)? {2’b0,a,b}:{a,b,c,d};

0 0

01

a b c d

September 9, 2019 http://csg.csail.mit.edu/6.375 L03-7

Logical right shift circuit

§ Define log n shifters of sizes 1, 2, 4, …
§ Define log n muxes to perform a

particular size shift
§ Suppose n = {n1,n0} is a two bit

number. A shift by n can be expressed
as two conditional expressions where
the second uses the output of the first

00

0

n0

n1 01

01

Bit#(4) input = {a,b,c,d}
Bit#(4) tmp = (s1==1)? {2’b0,a,b}:input;
Bit#(4) output = (s0==1)? {1’b0,tmp[3],tmp[2],tmp[1]}:tmp;

tmp[3:1]

September 9, 2019 http://csg.csail.mit.edu/6.375 L03-8

Multiplication by repeated addition

1101 (13)
1011 (11)

0000
+ 1101

01101
+ 1101

100111
+ 0000

0100111
+ 1101
10001111 (143)

b Multiplicand
a Muliplier *

tp
m0
tp
m1
tp
m2
tp
m3
tp

At each step we add either
1101 or 0 to the result
depending upon a bit in the
multiplier

We also shift the result by
one position at every step

Notice, the first addition is
unnecessary because it
simply yields m0

mi = (a[i]==0)? 0 : b;

September 9, 2019 http://csg.csail.mit.edu/6.375 L03-9

Multiplication by repeated addition
circuit

1101 (13)
1011 (11)

0000
+ 1101

01101
+ 1101

100111
+ 0000

0100111
+ 1101
10001111 (143)

b Multiplicand
a Muliplier *

tp
m0
tp
m1
tp
m2
tp
m3
tp

add4

a1 m1

a2 m2

a3 m3

add4

add4

a0 m0

add4

0 0 0 0

mi = (a[i]==0)? 0 : b;

September 9, 2019 http://csg.csail.mit.edu/6.375 L03-10

Combinational 32-bit multiply
function Bit#(64) mul32(Bit#(32) a, Bit#(32) b);

Bit#(32) tp = 0;
Bit#(32) prod = 0;
for(Integer i = 0; i < 32; i = i+1)
begin

Bit#(32) m = (a[i]==0)? 0 : b;
Bit#(33) sum = add32(m,tp,0);
prod[i] = sum[0];
tp = sum[32:1];

end
return {tp,prod};

endfunction

Lot of gates!

This circuit uses
32 add32 circuits

September 9, 2019 http://csg.csail.mit.edu/6.375 L03-11

Analysis of 32-bit multiply
function Bit#(64) mul32(Bit#(32) a, Bit#(32) b);
Bit#(32) tp = 0;
Bit#(32) prod = 0;
for(Integer i = 0; i < 32; i = i+1)
begin

Bit#(32) m = (a[i]==0)? 0 : b;
Bit#(33) sum = add32(m,tp,0);
prod[i] = sum[0];
tp = sum[32:1];

end
return {tp,prod};

endfunction

Long chains of gates
n 32-bit multiply has 32 ripple carry adders in a sequence!
n 32-bit ripple carry adder has a 32-long chain of gates

Can we design a faster
adder?
n yes!

Can we reuse the adder
circuit and reduce the size
of the multiplier
n stay tuned ...

Take home problem: What is the propagation delay of
mul32 in terms of FA delays?

September 9, 2019 http://csg.csail.mit.edu/6.375 L03-12

Combinational IFFT

in0

…

in1

in2

in63

in3

in4

Bfly4

Bfly4

Bfly4

x16

Bfly4

Bfly4

Bfly4

…

Bfly4

Bfly4

Bfly4

…

out0

…

out1

out2

out63

out3

out4

Permute

Permute

Permute

All numbers are complex
and represented as two
sixteen bit quantities.
Fixed-point arithmetic is
used to reduce area,
power, ...

*

*

*

*

+

-

-

+

+

-

-

+

*j
t2

t0

t3

t1

September 9, 2019 http://csg.csail.mit.edu/6.375 L03-13

4-way Butterfly Node

function Vector#(4,Complex) bfly4
(Vector#(4,Complex) t, Vector#(4,Complex) x);

t’s (twiddle coefficients) are mathematically derivable
constants for each bfly4 and depend upon the position
of bfly4 the in the network

*

*

*
*

+

-

-
+

+

-

-
+

*i

x0
x1
x2
x3

t0
t1
t2
t3

September 9, 2019 http://csg.csail.mit.edu/6.375 L03-14

BSV code: 4-way Butterfly
function Vector#(4,Complex#(s)) bfly4

(Vector#(4,Complex#(s)) t, Vector#(4,Complex#(s)) x);

Vector#(4,Complex#(s)) m, y, z;

m[0] = x[0] * t[0]; m[1] = x[1] * t[1];
m[2] = x[2] * t[2]; m[3] = x[3] * t[3];

y[0] = m[0] + m[2]; y[1] = m[0] – m[2];
y[2] = m[1] + m[3]; y[3] = i*(m[1] – m[3]);

z[0] = y[0] + y[2]; z[1] = y[1] + y[3];
z[2] = y[0] – y[2]; z[3] = y[1] – y[3];

return(z);
endfunction

Polymorphic code:
works on any type
of numbers for
which *, + and -
have been defined

*

*

*
*

+

-

-
+

+

-

-
+

*i

m y z

Vector does not mean storage; a vector
is just a group of wires with names

September 9, 2019 http://csg.csail.mit.edu/6.375 L03-15

Language notes: Sequential
assignments

§ Sometimes it is convenient to reassign a variable
(x is zero every where except in bits 4 and 8):

§ This may result in the introduction of muxes in a
circuit:

Bit#(32) x = 0;
let y = x+1;
if (p) x = 100;
let z = x+1;

Bit#(32) x = 0;
x[4] = 1; x[8] = 1;

x

0

100

p

+1

+1

z

y
0

1

September 9, 2019 http://csg.csail.mit.edu/6.375 L03-16

Complex Arithmetic

§ Addition
§ zR = xR + yR

§ zI = xI + yI

§ Multiplication
§ zR = xR * yR - xI * yI

§ zI = xR * yI + xI * yR

September 9, 2019 http://csg.csail.mit.edu/6.375 L03-17

Representing complex numbers as
a struct
typedef struct{

Int#(t) r;
Int#(t) i;

} Complex#(numeric type t) deriving (Eq,Bits);

§ Notice the Complex type is parameterized by the size of Int
chosen to represent its real and imaginary parts

§ If x is a struct then its fields can be selected by writing x.r
and x.i

September 9, 2019 http://csg.csail.mit.edu/6.375 L03-18

BSV code for Addition
typedef struct{

Int#(t) r;
Int#(t) i;

} Complex#(numeric type t) deriving (Eq,Bits);

function Complex#(t) cAdd
(Complex#(t) x, Complex#(t) y);

Int#(t) real = x.r + y.r;
Int#(t) imag = x.i + y.i;
return(Complex{r:real, i:imag});

endfunction

What is the type of this + ?

September 9, 2019 http://csg.csail.mit.edu/6.375 L03-19

Overloading (Type classes)
§ The same symbol can be used to represent

different but related operators using Type
classes

§ A type class groups a bunch of types with
similarly named operations. For example, the
type class Arith requires that each type
belonging to this type class has operators +,-,
*, / etc. defined

§ We can declare Complex type to be an
instance of Arith type class

September 9, 2019 http://csg.csail.mit.edu/6.375 L03-20

Overloading +, *
instance Arith#(Complex#(t));
function Complex#(t) \+

(Complex#(t) x, Complex#(t) y);
Int#(t) real = x.r + y.r;
Int#(t) imag = x.i + y.i;
return(Complex{r:real, i:imag});

endfunction

function Complex#(t) *
(Complex#(t) x, Complex#(t) y);

Int#(t) real = x.r*y.r – x.i*y.i;
Int#(t) imag = x.r*y.i + x.i*y.r;
return(Complex{r:real, i:imag});

endfunction
…
endinstance

The context allows the compiler to pick
the appropriate definition of an operator

September 9, 2019 http://csg.csail.mit.edu/6.375 L03-21

Combinational IFFT

stage_f function

repeats
stage_f three
times

function Vector#(64, Complex#(n)) stage_f
(Bit#(2) stage, Vector#(64, Complex#(n)) stage_in);

function Vector#(64, Complex#(n)) ifft
(Vector#(64, Complex#(n)) in_data);

September 9, 2019 http://csg.csail.mit.edu/6.375 L03-22

in0

…

in1

in2

in63

in3

in4

Bfly4

Bfly4

Bfly4

x16

Bfly4

Bfly4

Bfly4

…

Bfly4

Bfly4

Bfly4

…

out0

…

out1

out2

out63

out3

out4

Permute

Permute

Permute

BSV Code: Combinational IFFT
function Vector#(64, Complex#(n)) ifft

(Vector#(64, Complex#(n)) in_data);
//Declare vectors

Vector#(4,Vector#(64, Complex#(n))) stage_data;
stage_data[0] = in_data;
for (Bit#(2) stage = 0; stage < 3; stage = stage + 1)
stage_data[stage+1] = stage_f(stage,stage_data[stage]);

return(stage_data[3]);
endfunction

The for-loop is unfolded and stage_f
is in-lined during static elaboration

No notion of loops or procedures during execution

September 9, 2019 http://csg.csail.mit.edu/6.375 L03-23

function Vector#(64, Complex#(n)) stage_f
(Bit#(2) stage, Vector#(64, Complex#(n)) stage_in);

Vector#(64, Complex#(n)) stage_temp, stage_out;
for (Integer i = 0; i < 16; i = i + 1)
begin

Integer idx = i * 4;
Vector#(4, Complex#(n)) x;
x[0] = stage_in[idx]; x[1] = stage_in[idx+1];
x[2] = stage_in[idx+2]; x[3] = stage_in[idx+3];
let twid = getTwiddle(stage, fromInteger(i));
let y = bfly4(twid, x);
stage_temp[idx] = y[0]; stage_temp[idx+1] = y[1];
stage_temp[idx+2] = y[2]; stage_temp[idx+3] = y[3];

end
//Permutation
for (Integer i = 0; i < 64; i = i + 1)

stage_out[i] = stage_temp[permute[i]];
return(stage_out);

endfunction

BSV Code for stage_f

twid’s are
mathematically

derivable
constants

September 9, 2019 http://csg.csail.mit.edu/6.375 L03-24

Permute

September 9, 2019 http://csg.csail.mit.edu/6.375 L03-25

Permute

§ permute[i] specifies the
destination index for each source
index

§ Even though the permute is
known at compile time, the BSV
compiler takes to long to inline
array indices

function Integer permute (Integer dst, Integer points);
Integer src = ?;
if (dst < points/2) src = dst*2;
else src = (dst – points/2)*2 + 1;
return src;

endfunction

§ A better way to supply the permute function

