Complex Combinational
Circuits in Bluespec

Arvind
Computer Science & Artificial Intelligence Lab
Massachusetts Institute of Technology

September 9, 2019 http://csg.csail.mit.edu/6.375 LO3-1



Selecting a wire: X[i]

= Constant selector: e.g., X[2]

assume X is 4 bits wide

[2]

= Dynamic selector: x[i]

September 9, 2019

X0
X1
X2
X3

| 5

[1]

X0
x1
X2
X3

http://csg.csail.mit.edu/6.375

w N RO

no hardware;
x[2] is just
the name of
a wire

4-way mux

LO3-2



A 2-way multiplexer

P

A mux is a simple
conditional expression

] D
D

P

Gate-level implementation

Bluespec |[(p)? b : a ;

If @ and b are n-bit wide
then this structure is
True is treated as a1 replicated n times; p is
and False as a 0 the same input for all the
replicated structures

September 9, 2019 http://csg.csail.mit.edu/6.375 LO3-3



A 4-way multiplexer

case ({s1,s0}) a —1°
syntax: 2°bo0\: a;
writing A\ (ZBEL]) b > —;
2o 2°b10/: \c; 50 °
would have , .
also worked 2°bl d; N\ 1
endcase c —o 1
d —1
,rs@

(s1==0) & (s0==1),
which is the same

writing ~s1 & sO n-way mux can be

implemented using n-1
two-way muxes

September 9, 2019 http://csg.csail.mit.edu/6.375 LO3-4



Shift operators

1001 abcd

| | | |

- i Logical right
00 0 0 shift by 2
oy oy Vv
0010 ©0 ab

= Fixed size shift operation is cheap in hardware
— just wire the circuit appropriately

» Arithmetic shifts are similar

-8/4 1 0 0 0 abcd
—i — useful for
multiplication
and division
' by 2"
-2 11160 aaapb

September 9, 2019 http://csg.csail.mit.edu/6.375 LO3-5



Logical right shift by n

= Shift n can be broken down into log n steps of
fixed-length shifts of size 1, 2, 4, ...

= The bit encoding of n tells us which shifters are needed;

if the value of the jt" (least significant) bit is 1 then we
need to shift by 2/ bits

= For example, we can perform shift 5 (=4+1) by doing
shifts of size 4 and 1. Thus, 8'b01100111 shift 5 can be
performed in two steps:

= 8'b01100111 = 8'b00000110 = 8'b000O00O0O11
shift 4 shift 1

September 9, 2019 http://csg.csail.mit.edu/6.375 LO3-6



Conditional operation: shift
versus no-shift

ab cd

071 HH

s N+ 7

= We need a mux to select the appropriate wires:
if s is one the mux will select the wires on the

left (shift) otherwise it would select wires on the
right (no-shift)

(s==1)? {2°b0,a,b}:{a,b,c,d};

September 9, 2019 http://csg.csail.mit.edu/6.375 LO3-7



Logical right shift circuit

= Define log n shifters of sizes 1, 2, 4, ...

= Define log n muxes to perform a
. : : 00
particular size shift 11 1)
= Suppose n = {n1,n0} is a two bit n1l )\1 0 /
number. A shift by n can be expressed =

as two conditional expressions where
the second uses the output of the first

0
l vy vV VY vV vV VY yY
n@ \1 (%] /

tmp[3:1]
A

Bit#(4) input = {a,b,c,d} ///
Bit#(4) tmp = (s1==1)? {2’b@,a,b}:input;

Bit#(4) output = (s@==1)? {1’°boEmp[3],tmp[2],tmp[1]}:tmp;

September 9, 2019 http://csg.csail.mit.edu/6.375 LO3-8



Multiplication by repeated addition

b Mulfcip_licanil 1101 (13) At each step we add either
a Muliplier loi1 (11 1101 or O to the result

depending upon a bit in the
tnlgo 9900 multiplier

-+ 1101
tp 01101 A | ) :
mi = (a[i]==0)? 0 : b;

m1 + 11@1% (afi] )
tp 1@@111/ .
m2 + 0000 / We also_s.hlft the result by
tp Ol@@ll_lJ one position at every step
m3 + 1101 Notice, the first addition is
tp 10001111  (143) unnecessary because it

September 9, 2019

simply yields mO

http://csg.csail.mit.edu/6.375 LO3-9



Multiplication by repeated addition

Circult
ad —  mo 9 000
b Multiplicand 1101 (13) , l l l l
a Muliplier * 1011 (11) i add4
tp 0000 al = mil
mO + 1101
tp 91101 ] dda
m1l + 1101
tp 100111 32 = m
m2 + 0000 B
tp 9100111 l l i l
m3 + 1101 ( add4
t
p 10001111  (143) 13
mi = (a[i]==0)? @ : b; i add4

September 9, 2019

http://csg.csail.mit.edu/6.375

al

v 1o03-10



Combinational 32-bit multiply

function Bit#(64) mul32(Bit#(32) a, Bit#(32) b);

Bit#(32) tp = 0;
Bit#(32) prod = 0;
for(Integer i = 0; i < 32; 1 = i+1)

begin
Bit#(32) m = (a[i]==0)? @ : b;
Bit#(33) sum = add32(m, tp,@),
prod[i] = sum[0@];
tp = sum[32:1];

end

return {tp,prod};

endfunction

September 9, 2019 http://csg.csail.mit.edu/6.375

This circuit uses
32 add32 circuits

Lot of gates!

LO3-11



Analysis of 32-bit multiply

function Bit#(64) mul32(Bit#(32) a, Bit#(32) b);
Bit#(32) tp = 0;

Bit#(32) prod = 0; .
for(Integer i = 0; i < 32; i = i+1) # Can we design a faster
begin adder?
i = P © °

B}t#(32) m (a[i]==0)? © : b; . yes!

Bit#(33) sum = add32(m, tp,@),

prod[i] = sum[0]; # Can we reuse the adder

tp = sum[32:1]; circuit and reduce the size
end -y
return {tp, prod}; of the multiplier

endfunction = Stay tuned ...

#® Long chains of gates
s 32-bit multiply has 32 ripple carry adders in a sequence!
s 32-bit ripple carry adder has a 32-long chain of gates

Take home problem: What is the propagation delay of
mul32 in ferms of FA delays?

September 9, 2019 http://csg.csail.mit.edu/6.375 LO3-12



Combinational IFFT

Bfly4

V%}V‘} VYV VN

Bfly4

thLV VYV V ¥

!hn}v

1n0\
. - —> —_— >
inl —*| Bfly4 > ] Bfly4 —_—
/ > —> —_—
. N ) - .
in2 —> —> —> U
/ Bfly4 (L | Bfly4 3 ©
in3 - g ] ] g
x16 —+ —
Bfly4 e —3| Bfly4 =
in63/
—_ + 4
‘ () ()
— —
\' NN\
tl )
Ro4ave Or
t2 /™
(= D)—EP—( )
T3

September 9, 2019

http://csg.csail.mit.edu/6.375

Bfly4

VVVLWVL

91NwJad

sixteen bit quantities.

Fixed-point arithmetic is
used to reduce area,
DOWE, ...

\out63

All numbers are complex
and represented as two

LO3-13



4-way Butterfly Node

3_t3:

function Vector#(4,Complex) bfly4
(Vector#(4,Complex) t, Vector#(4,Complex) x);

@ t's (twiddle coefficients) are mathematically derivable
constants for each bfly4 and depend upon the position

of bfly4 the in the network

September 9, 2019

http://csg.csail.mit.edu/6.375

LO3-14



BSV code: 4-way Butterfly

function Vector#(4,Complex#(s)) bfly4

(Vector#(4,Complex#(s)) t, Vector#(4,Complex#(s)) x);

Vector#(4,Complex#(s)) m, y, z;

m[@] = x[0] * t[e]; m[1] = x[1] * t[1];
m[2] = x[2] * t[2]; m[3] = x[3] * t[3];
y[@0] = m[@] + m[2]; y[1] = m[@] - m[2];
y[2] = m[1] + m[3]; y[3] = i*(m[1] - m[3]);
z[0] = y[O0] + y[2]; z[1] = y[1] + y[3];
z[2] = y[0] - y[2]; z[3] = y[1] - y[3];

return(z);
endfunction

Vector does not mean storage; a vector
is just a group of wires with names

September 9, 2019 http://csg.csail.mit.edu/6.375

Polymorphic code:
works on any type
of numbers for
which *, + and -
have been defined

LO3-15



Language notes: Sequential
assignments

= Sometimes it is convenient to reassign a variable
(X is zero every where except in bits 4 and 8):

Bit#(32) x = 0;
x[4] = 1; x[8] =

= This may result in the introduction of muxes in a

circuit:
Bit#(32) x = 0; 0 —— +1 VA
let vy = x+1; )
if (p) x = 100; i
+1|——
let z = x+1; 100 | X z

September 9, 2019 http://csg.csail.mit.edu/6.375 LO3-16



Complex Arithmetic

= Addition
" Zp = Xp t YR
" Z; = X1t Y;

= Multiplication

" ZR = Xp * YrR- X1 * V1
" 71 = Xg Y1+ X * YR

September 9, 2019 http://csg.csail.mit.edu/6.375 LO3-17



Representing complex numbers as
a struct

typedef struct{
Int#(t) r;
Int#(t) i;
} Complex#(numeric type t) deriving (Eq,Bits);

= Notice the Complex type is parameterized by the size of Int
chosen to represent its real and imaginary parts

= If X is a struct then its fields can be selected by writing x.r
and X.i

September 9, 2019 http://csg.csail.mit.edu/6.375 LO3-18



BSV code for Addition

typedef struct{
Int#(t) r;
Int#(t) i;
} Complex#(numeric type t) deriving (Eq,Bits);

function Complex#(t) cAdd
(Complex#(t) x, Complex#(t) y);
Int#(t) real = x.r + y.r;
Int#(t) imag = x.i +y.i;
return(Complex{r:real, i:imag});

endfunction

What is the type of this +?

September 9, 2019 http://csg.csail.mit.edu/6.375 L03-19



Overloading (Type classes)

= The same symbol can be used to represent

different but related operators using Type
classes

= A type class groups a bunch of types with
similarly named operations. For example, the
type class Arith requires that each type

belonging to this type class has operators +,-,
* [ etc. defined

= We can declare Complex type to be an
instance of Arith type class

September 9, 2019 http://csg.csail.mit.edu/6.375 L03-20



Overloading +, *

instance Arith#(Complex#(t));
function Complex#(t) \+
(Complex#(t) x, Complex#(t) y);
Int#(t) real = x.r + y.r;
Int#(t) imag = x.1 + y.i;
return(Complex{r:real, i:imag});
endfunction

function Complex#(t) \*
(Complex#(t) x, Complex#(t) y);
Int#(t) real = x.r*y.r - x.i*y.i;
Int#(t) imag = x.r*y.i + x.i*y.r;
return(Complex{r:real, i:imag});
endfunction

The context allows the compiler to pick

endinstance the appropriate definition of an operator

September 9, 2019 http://csg.csail.mit.edu/6.375 L03-21



Combinational IFFT

in@
\\\\

inl —

Bfly4

in2 ;;;;
Bfly4

V}V?VLW VV VY

in3

in4

X16

Bfly4

VVVLVVVL

in63/

31NwJad

Bfly4

VLVLVLVL VLVLVVVL

Bfly4

Bfly4

VhVVLVL

wwaw}wL VFVVVLVV l"lwr'l

stage f function

91nwJad

Bfly4

VLV}‘VV} VYV V N

Bfly4

VP\VVLVV VYV V Y

th%!

Bfly4

VVVLVV‘L

31NwJad

out@

—» outl

out2

out3

out4d

///

out63

function Vector#(64, Complex#(n)) stage f
(Bit#(2) stage, Vector#(64, Complex#(n)) stage in);

function Vector#(64, Complex#(n)) ifft
(Vector#(64, Complex#(n)) in_data);

September 9, 2019

http://csg.csail.mit.edu/6.375

repeats

stage f three

times

L03-22



BSV Code: Combinational IFFT

function Vector#(64, Complex#(n)) ifft
(Vector#(64, Complex#(n)) in_data);

//Declare vectors
Vector#(4,Vector#(64, Complex#(n))) stage data;
stage data[@] = in_data;
for (Bit#(2) stage = 9; stage < 3; stage = stage + 1)
stage data[stage+l] = stage f(stage,stage data[stage]);
return(stage data[3]);

endfunction

The for-loop is unfolded and stage_f
is in-lined during static elaboration

No notion of loops or procedures during execution

September 9, 2019 http://csg.csail.mit.edu/6.375 L03-23



BSV Code for stage f

function Vector#(64, Complex#(n)) stage f
(Bit#(2) stage, Vector#(64, Complex#(n)) stage in);
Vector#(64, Complex#(n)) stage temp, stage out;
for (Integer 1 =0; 1 < 165 1 = 1 + 1)
begin
Integer idx = 1 * 4;
Vector#(4, Complex#(n)) x;
x[@] = stage in[idx]; x[1] = stage in[idx+1];
x[2] = stage in[idx+2]; x[3] = stage in[idx+3];
let = getTwiddle(stage, fromInteger(i));

let y = b twid, x);
stage temp[idx] 0]; stage temp[idx+1l] = y[1];
stage temp[idx+2] = y[2]; e temp[idx+3] = y[3];
end
/7Permutation
for (Integer 1 = 0; 1 < 64; 1 =1 + 1) twid's are
stage_out[i] = stage_temp[permute[i]]; mathematically
return(stage_out); derivable
endfunction constants

September 9, 2019 http://csg.csail.mit.edu/6.375 L03-24



Permute

= permute[i] specifies the o .
destination index for each source = _ =
index = 3 =

= Even though the permute is 5
known at compile time, the BSV — ? —

compiler takes to long to inline
array indices

= A better way to supply the permute function

Integer src = ?;
if (dst < points/2) src = dst*2;
else src = (dst - points/2)*2 + 1;
return src;

endfunction

function Integer permute (Integer dst, Integer points);

September 9, 2019 http://csg.csail.mit.edu/6.375

LO3-25



