Complex Combinational Circuits in Bluespec

Arvind Computer Science & Artificial Intelligence Lab Massachusetts Institute of Technology

Selecting a wire: x[i]

assume x is 4 bits wide

Constant selector: e.g., x[2]

no hardware; x[2] is just the name of a wire

Dynamic selector: x[i]

4-way mux

A 2-way multiplexer

A mux is a simple conditional expression

Bluespec

True is treated as a 1 and False as a 0

If a and b are n-bit wide then this structure is replicated n times; p is the same input for all the replicated structures

A 4-way multiplexer

n-way mux can be implemented using n-1 two-way muxes

Shift operators

Logical right shift by 2

- Fixed size shift operation is cheap in hardware

 just wire the circuit appropriately
- Arithmetic shifts are similar

Logical right shift by n

- Shift n can be broken down into log n steps of fixed-length shifts of size 1, 2, 4, ...
 - The bit encoding of n tells us which shifters are needed; if the value of the *i*th (least significant) bit is 1 then we need to shift by 2ⁱ bits
 - For example, we can perform shift 5 (=4+1) by doing shifts of size 4 and 1. Thus, 8'b01100111 shift 5 can be performed in two steps:
 - 8'b01100111 \Rightarrow 8'b00000110 \Rightarrow 8'b0000011 shift 4 shift 1

Conditional operation: shift versus no-shift

 We need a mux to select the appropriate wires: if s is one the mux will select the wires on the left (shift) otherwise it would select wires on the right (no-shift)

Logical right shift circuit

- Define log *n* shifters of sizes 1, 2, 4, ...
- Define log n muxes to perform a particular size shift
- Suppose n = {n1,n0} is a two bit number. A shift by n can be expressed as two conditional expressions where the second uses the output of the first

tmp[3:1]

Multiplication by repeated addition

At each step we add either 1101 or 0 to the result depending upon a bit in the multiplier

We also shift the result by one position at every step

Notice, the first addition is unnecessary because it simply yields m0

Multiplication by repeated addition circuit

Combinational 32-bit multiply

```
function Bit#(64) mul32(Bit#(32) a, Bit#(32) b);
  Bit#(32) tp = 0;
  Bit#(32) prod = 0;
  for(Integer i = 0; i < 32; i = i+1)</pre>
  begin
                                            This circuit uses
     Bit#(32) m = (a[i]==0)? 0 : b;
                                            32 add32 circuits
     Bit#(33) sum = add32(m,tp,0);
     prod[i] = sum[0];
                  = sum[32:1];
     tp
                                             Lot of gates!
  end
  return {tp,prod};
endfunction
```

Analysis of 32-bit multiply

- Can we design a faster adder?
 - yes!
- Can we reuse the adder circuit and reduce the size of the multiplier
 - stay tuned ...

Long chains of gates

- 32-bit multiply has 32 ripple carry adders in a sequence!
- 32-bit ripple carry adder has a 32-long chain of gates

Take home problem: What is the propagation delay of mul32 in terms of FA delays?

Combinational IFFT

4-way Butterfly Node

function Vector#(4,Complex) bfly4
 (Vector#(4,Complex) t, Vector#(4,Complex) x);

t's (twiddle coefficients) are mathematically derivable constants for each bfly4 and depend upon the position of bfly4 the in the network

BSV code: 4-way Butterfly

function Vector#(4,Complex#(s)) bfly4 (Vector#(4,Complex#(s)) t, Vector#(4,Complex#(s)) x);

```
Vector#(4,Complex#(s)) m, y, z;
  m[0] = x[0] * t[0]; m[1] = x[1] * t[1];
  m[2] = x[2] * t[2]; m[3] = x[3] * t[3];
  y[0] = m[0] + m[2]; y[1] = m[0] - m[2];
  y[2] = m[1] + m[3]; y[3] = i*(m[1] - m[3]);
  z[0] = y[0] + y[2]; z[1] = y[1] + y[3];
  z[2] = y[0] - y[2]; z[3] = y[1] - y[3];
  return(z);
endfunction
```

```
Vector does not mean storage; a vector
is just a group of wires with names
```


Polymorphic code: works on any type of numbers for which *, + and have been defined

Language notes: Sequential assignments

 Sometimes it is convenient to reassign a variable (x is zero every where except in bits 4 and 8):

This may result in the introduction of muxes in a circuit:

http://csg.csail.mit.edu/6.375

Complex Arithmetic

- Addition
 - $z_R = x_R + y_R$
 - $z_I = x_I + y_I$
- Multiplication
 - $z_R = x_R * y_R x_I * y_I$
 - $z_I = x_R * y_I + x_I * y_R$

Representing complex numbers as a **struct**

typedef struct{ Int#(t) r; Int#(t) i; } Complex#(numeric type t) deriving (Eq,Bits);

- Notice the Complex type is parameterized by the size of Int chosen to represent its real and imaginary parts
- If x is a struct then its fields can be selected by writing x.r and x.i

BSV code for Addition

```
typedef struct{
  Int#(t) r;
  Int#(t) i;
} Complex#(numeric type t) deriving (Eq,Bits);
function Complex#(t) cAdd
          (Complex#(t) x, Complex#(t) y);
  Int#(t) real = x.r + y.r;
  Int#(t) imag = x.i + y.i;
  return(Complex{r:real, i:imag});
endfunction
```

What is the type of this +?

Overloading (Type classes)

- The same symbol can be used to represent different but related operators using Type classes
- A type class groups a bunch of types with similarly named operations. For example, the type class Arith requires that each type belonging to this type class has operators +,-, *, / etc. defined
- We can declare Complex type to be an instance of Arith type class

Overloading +, *

```
instance Arith#(Complex#(t));
function Complex#(t) \+
               (Complex#(t) x, Complex#(t) y);
   Int#(t) real = x.r + y.r;
   Int#(t) imag = x.i + y.i;
   return(Complex{r:real, i:imag});
endfunction
function Complex#(t) \*
               (Complex#(t) x, Complex#(t) y);
   Int#(t) real = x.r*y.r - x.i*y.i;
   Int#(t) imag = x.r*y.i + x.i*y.r;
   return(Complex{r:real, i:imag});
endfunction
...
```

The context allows the compiler to pick the appropriate definition of an operator

endinstance

Combinational IFFT

function Vector#(64, Complex#(n)) stage_f
 (Bit#(2) stage, Vector#(64, Complex#(n)) stage_in);

function Vector#(64, Complex#(n)) ifft
 (Vector#(64, Complex#(n)) in_data);

repeats stage_f three times

BSV Code: Combinational IFFT

The for-loop is unfolded and stage_f is in-lined during static elaboration

No notion of loops or procedures during execution

BSV Code for stage_f

```
function Vector#(64, Complex#(n)) stage_f
        (Bit#(2) stage, Vector#(64, Complex#(n)) stage_in);
Vector#(64, Complex#(n)) stage_temp, stage_out;
   for (Integer i = 0; i < 16; i = i + 1)</pre>
    begin
      Integer idx = i * 4;
      Vector#(4, Complex#(n)) x;
      x[0] = stage_in[idx]; x[1] = stage_in[idx+1];
      x[2] = stage_in[idx+2]; x[3] = stage_in[idx+3];
      let (twid )= getTwiddle(stage, fromInteger(i));
      let y = bfly4(twid, x);
      stage_temp[idx] = y[0]; stage_temp[idx+1] = y[1];
      stage_temp[idx+2] = y[2]; stage_temp[idx+3] = y[3];
    end
  //Permutation
                                                       twid's are
  for (Integer i = 0; i < 64; i = i + 1)</pre>
                                                     mathematically
      stage_out[i] = stage_temp[permute[i]];
  return(stage_out);
                                                        derivable
endfunction
                                                       constants
```

Permute

- permute[i] specifies the destination index for each source index
- Even though the permute is known at compile time, the BSV compiler takes to long to inline array indices

A better way to supply the permute function

```
function Integer permute (Integer dst, Integer points);
Integer src = ?;
if (dst < points/2) src = dst*2;
else src = (dst - points/2)*2 + 1;
return src;
endfunction</pre>
```