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What is needed to make 
hardware design easier
 Extreme IP reuse

 Multiple instantiations of a block for different performance 
and application requirements

 Packaging of IP so that the blocks can be assembled easily 
to build a large system (black box model)

 Ability to do modular refinement

 Whole system simulation to enable concurrent 
hardware-software development   

“Intellectual Property”
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IP Reuse sounds wonderful 
until you try it ...

Example: Commercially 
available FIFO IP block

These constraints are spread over many 
pages of the documentation...
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A different view of Digital Hardware

 Complex Digital Systems are a collection of 
cooperating sequential machines, which all operate 
concurrently

 A sequential machine is like an object in an Object-
Oriented language like C++ or Java

 A sequential machine can be manipulated only via 
its interface methods
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…but first the basics



Finite State Machines (FSMs) 

 FSMs are a much studied mathematical object 
like the Boolean Algebra

 FSMs are used extensively in software as well

 A computer (in fact any digital hardware) is an FSM, 
though we don’t think of it as such!

 Synchronous Sequential Circuits are a method 
to implement FSMs in hardware

outputinput

Combinational
logic

state Next 
state

clock

June 14, 2019
7-6



D Flip-flop with Write Enable
The building block of Sequential Circuits

D
Q

D

C

EN

C

D

Q

EN

D
QD

C

EN

0
1

Data is captured only if EN is on

EN D Qt Qt+1

0 X 0 0

0 X 1 1

1 0 X 0

1 1 X 1

hold

copy
input

No need to show 
the  clock explicitly

t1 t2 t3

June 14, 2019
7-7



Registers

Register: A group of flip-flops with a common 
clock and enable

Register file: A group of registers with a common 
clock, a shared set of input and output ports
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Clocked Sequential Circuits

 In this class we will deal with only clocked 
sequential circuits 

 We will also assume that all flip-flops are 
connected to the same clock 

 To avoid clutter, the clock input will be implicit 
and not shown in diagrams 

 Clock inputs are not needed in BSV descriptions 
unless we design multi-clock circuits
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An example

Modulo-4 counter

Prev State NextState

q1q0 inc = 0 inc = 1

00 00 01

01 01 10

10 10 11

11 11 00

q0t+1 = ~inc∙q0t + inc∙~q0t 

= inc  q0t

q1t+1 = ~inc∙q1t + inc∙~q1t∙q0t + inc∙q1t∙~q0t

= ~inc∙q1t + inc∙(q1t  q0t)

00 01

1011

inc=1

inc=1

inc=1inc=1

inc=0 inc=0

inc=0 inc=0

Finite State 
Machine (FSM) 
representation
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Circuit for the modulo counter using 
D flip-flops with enables
 Use two D flip-flops, q0 and q1, to store the counter value

 Notice, the state of flip-flop changes only when inc is true

q0

q1

inc

{q1t+1,q0t+1} = {(q1t  q0t), q0t }  (assume inc is True)
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Sequential Circuit as a module 
with Interface

 A module has internal state and an interface

 The internal state can be read and manipulated only by its 
interface methods

 An action method specifies which state elements are to be 
modified; it has an enable wire which must be true to execute 
the action 

 Actions are atomic -- either all the specified state elements 
are modified or none of them are modified (no partially 
modified state is visible)

 Informally we refer to the interface of a module as its type

interface Counter;
method Action inc;
method Bit#(2) read;

endinterface

A module in Bluespec is like a class definition in Java or C++

Modulo-4
counterin

c

re
a
d 2
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Modulo-4 counter:
An implementation in Bluespec

interface Counter;
method Action inc;
method Bit#(2) read;

endinterface

module mkCounter(Counter);
Reg#(Bit#(2)) cnt <- mkReg(0);
method Action inc;

cnt <= {cnt[1]^cnt[0],~cnt[0]};
endmethod
method Bit#(2) read;

return cnt;
endmethod

endmodule

State specification

Initial value

Modulo-4
counteri

n
c

r
e
a
d 2

instantiate

q0t+1 = ~q0t

q1t+1 = q1t  q0t

Action to specify 
how the value of the 
cnt is to be set

t+1 ttt

Register 
assignment

type
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Modulo-4 counter 

The generated circuit

module mkCounter(Counter);
Reg#(Bit#(2)) cnt <- mkReg(0);
method Action inc;

cnt <={cnt[1]^cnt[0],~cnt[0]};
endmethod
method Bit#(2) read;

return cnt;
endmethod

endmodule

i
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GCD: Euclid’s Algorithm

Euclid’s algorithm for computing the Greatest 
Common Divisor (GCD):

a: 15                 b: 6

9 6 subtract

3 6 subtract

6 3 swap

3 3 subtract

0 3 subtract
answer
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GCD module
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interface GCD;
method Action start (Bit#(32) a, Bit#(32) b); 
method ActionValue#(Bit#(32)) getResult;
method Bool busy;
method Bool ready;

endinterface

GCD can be started if the 
module is not busy;
Results can be read when 
ready

data result
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module mkGCD (GCD);

Reg#(Bit#(32)) x <- mkReg(0); Reg#(Bit#(32)) y <- mkReg(0);

Reg#(Bool) busy_flag <- mkReg(False);

rule gcd;

if (x >= y) begin x <= x – y; end //subtract

else if (x != 0) begin x <= y; y <= x; end //swap

endrule

method Action start(Bit#(32) a, Bit#(32) b) ; 

x <= a; y <= b; busy_flag <= True;                 

endmethod

method ActionValue#(Bit#(32)) getResult ; 

busy_flag <= False; return y;      

endmethod

method Bool busy 

= busy_flag;

method Bool ready 

= (x==0);

endmodule

GCD implementation

Assume b != 0

Rule gcd will execute repeatedly 
until x becomes 0

interface GCD;
method Action start(Bit#(32) a, Bit#(32) b); 
method ActionValue#(Bit#(32)) getResult;
method Bool busy;
method Bool ready;

endinterface
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start should be called only 
if the busy is false;
getResult should be called 
only when ready is true.

s
ta

rt

GCD

b
u
s
y

g
e
tR

e
s
u
lt

re
a
d
y

September 11, 2019 http://csg.csail.mit.edu/6.375 L04-17



Method calls

 Value method: Only observe the internal state 

 let counterValue = mod4counter.read;

 Bool isGcdBusy = gcd.busy;

 Action method: Updates the state of the module 

 mod4counter.inc;

 gcd.start(13,27);

 ActionValue#(t): Updates the state and returns a value

 let resultGcd <- gcd.getResult;

Notice the use of ‘<-’ instead of ‘=‘

 Suppose we wrote

 let badResultGCD = gcd.getResult;

 then the type of badResultGCD would be 

ActionValue#(t) instead of  t.

 ‘=‘ just names the value on the right hand side while 
‘<-’ indicates a side effect in addition to a return value 
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Rule

 A rule has a name (e.g., gcd)

 A rule is a collection of actions, which invoke 
methods

 All actions in a rule execute in parallel

 A rule can execute any time and when it executes 
all of its actions must execute

rule gcd;

if (x >= y) begin x <= x – y; end //subtract

else if (x != 0) begin x <= y; y <= x; end //swap

endrule

A module may contain rules

What is meaning of this?

t+1 tt+1t

Swap!
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Parallel Composition of Actions & 
Double-Writes

 Parallel composition, and consequently a rule 
containing it, is illegal if a double-write possibility 
exists 

 The Bluespec compiler rejects a program if there is 
any possibility of a double write in a rule or method

rule one; 

y <= 3; x <= 5; x <= 7; endrule Double write

Possibility of a 
double write

No double write
rule two; 

y <= 3; if (b) x <= 7; else x <= 5; endrule

rule three; 

y <= 3; x <= 5; if (b) x <= 7; endrule
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Guarded interfaces

 Make the life of the programmers easier: Include some 
checks (not busy, ready, ...) in the method definition itself, so 
that the user does not have to test the applicability of the 
method explicitly from outside

 Guarded Interface:

 Every method has a guard (rdy wire) 

 The value returned by a method is 
meaningful only if its guard is true

 Every action method has an enable signal 
(en wire) and it can be invoked (en can 
be set to true) only if its guard is true 

en and rdy wires 
are implicit; 
derived by the 
type of the method
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interface GCD;
method Action start (Bit#(32) a, Bit#(32) b); 
method ActionValue#(Bit#(32)) getResult;
method Bool busy;
method Bool ready;

endinterface



module mkGCD (GCD);

Reg#(Bit#(32)) x <- mkReg(0); Reg#(Bit#(32)) y <- mkReg(0);

Reg#(Bool) busy_flag <- mkReg(False);

rule gcd;

if (x >= y) begin x <= x – y; end //subtract

else if (x != 0) begin x <= y; y <= x; end //swap

endrule

method Action start(Bit#(32) a, Bit#(32) b) ; 

x <= a; y <= b; busy_flag <= True;                 

endmethod

method ActionValue#(Bit#(32)) getResult ; 

busy_flag <= False; return y;      

endmethod

endmodule

GCD with Guards

Assume b != 0

interface GCD;
method Action start (Bit#(32) a, Bit#(32) b); 
method ActionValue#(Bit#(32)) getResult;

endinterface

if (!busy_flag);

if (busy_flag&&(x==0));

Guard?
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Rules with guards

 Like a method, a rule can also have  a guard

 A rule can execute only if it’s guard is true, i.e., if 
the guard is false the rule has no effect

 True guards can be omitted. Equivalently, the 
absence of a guard means the guard is always true

 For example we can attach a guard to gcd to 
prevent its unnecessary execution:

rule foo if (p); 

begin x1 <= e1; x2 <= e2; end

endrule

guard Syntax: In rules, 
“if” is optional  
before the guard!

rule gcd if (busy_flag);

if (x >= y) begin x <= x – y; end //subtract

else if (x != 0) begin x <= y; y <= x; end //swap

endrule
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First-In-First-Out queue (FIFO)

 In hardware, fifo have fixed size 
which is often as small as 1, and 
therefore the producer blocks 
when enqueuing into a full fifo and 
the consumer blocks when 
dequeueing from an empty fifo

 FIFO data structure is used 
extensively both in hardware and 
software to connect things
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module mkFifo (Fifo#(1, Bit#(n)));
Reg#(Bit#(n))    d  <- mkRegU; 
Reg#(Bool) v  <- mkReg(False);
method Action enq(Bit#(n) x) 
v <= True; d <= x;

endmethod
method Action deq
v <= False;

endmethod
method Bit#(n) first 
return d;

endmethod
endmodule

One-Element FIFO Implementation 
with guards
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not empty

n
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if (!v);

if (v);

if (v);

Syntax: lack of semicolon 
turns the if into a guard

Guard expression is what is connected to 
the rdy wire of a method
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Streaming a function using a 
FIFO with guarded interfaces

inQ

f

outQ

rule stream;
outQ.enq(f(inQ.first)); 
inQ.deq; 

endrule

The implicit guards of the method calls are sufficient 
because a rule can execute only if the guards of all of 
its method calls are true
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if(inQ.notEmpty && outQ.notFull)

implicit guard



Streaming a module

outQinQ

? ?
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 Suppose we have a queue of pairs of numbers and we 
want to compute their GCDs and put the results in an 
output queue

 We can build such a system by creating the following 
modules

 To glue these modules together we define two rules: 
 invokeGCD to push data from inQ into gcd
 getResult to fetch result from gcd and put it into outQ

Fifo#(1,Vector#(2,t)) inQ <- mkFifo;
Fifo#(1,t) outQ <- mkFifo;
GCD gcd <- mkGCD;
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Streaming a module: code

rule invokeGCD ;
let x = inQ.first[0];
let y = inQ.first[1];
gcd.start(x,y); 
inQ.deq; 

endrule

rule getResult ;
let x <- gcd.getResult; 
outQ.enq(x); 

endrule Action value method

outQinQ

invoke
GCD

get
results

ta
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GCD
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Implicit 
guards?

inQ is 
not 
empty

gcd is 
not busy

if(inQ.first.rdy && inQ.deq.rdy
&& gcd.start.rdy);

X

if(gcd.getResult.rdy
&& outQ.enq.rdy);

X
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Power of Abstraction:
Another GCD implementation

 A GCD module with the same interface but with twice the 
throughput; uses two gcd modules in parallel

 turnI is used by the start method to direct the input to the 
gcd whose turn it is and then turnI is flipped

 Similarly, turnO is used by getResult to get the output from 
the appropriate gcd, and then turnO is flipped
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interface GCD;
method Action start (Bit#(32) a, Bit#(32) b); 
method ActionValue#(Bit#(32)) getResult;
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module mkMultiGCD (GCD);

GCD gcd1 <- mkGCD();

GCD gcd2 <- mkGCD();

Reg#(Bool) turnI <- mkReg(False);

Reg#(Bool) turnO <- mkReg(False); 

method Action start(Bit#(32) a, Bit#(32) b); 

if (turnI) gcd1.start(a,b); else gcd2.start(a,b); 

turnI <= !turnI;              

endmethod

method ActionValue (Bit#(32)) getResult; 

Bit#(32) y;

if (turnO) y <- gcd1.getResult

else y <- gcd2.getResult;

turnO <= !turnO

return y;      

endmethod

endmodule

High-throughput GCD code

interface GCD;
method Action start (Bit#(32) a, Bit#(32) b); 
method ActionValue#(Bit#(32)) getResult;

endinterface
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