
Sequential Circuits:
Modules with Guarded

Interfaces

Arvind

Computer Science & Artificial Intelligence Lab

Massachusetts Institute of Technology

September 11, 2019 http://csg.csail.mit.edu/6.375 L04-1

What is needed to make
hardware design easier
 Extreme IP reuse

 Multiple instantiations of a block for different performance
and application requirements

 Packaging of IP so that the blocks can be assembled easily
to build a large system (black box model)

 Ability to do modular refinement

 Whole system simulation to enable concurrent
hardware-software development

“Intellectual Property”

September 11, 2019 http://csg.csail.mit.edu/6.375 L04-2

data_in

push_req_n

pop_req_n

clk

rstn

data_out

full

empty

IP Reuse sounds wonderful
until you try it ...

Example: Commercially
available FIFO IP block

These constraints are spread over many
pages of the documentation...

September 11, 2019 http://csg.csail.mit.edu/6.375 L04-3

data_in

push_req_n

pop_req_n

clk

rstn

data_out

full

empty

IP Reuse sounds wonderful
until you try it ...

Example: Commercially
available FIFO IP block

These constraints are spread over many
pages of the documentation...

September 11, 2019 http://csg.csail.mit.edu/6.375 L04-4

A different view of Digital Hardware

 Complex Digital Systems are a collection of
cooperating sequential machines, which all operate
concurrently

 A sequential machine is like an object in an Object-
Oriented language like C++ or Java

 A sequential machine can be manipulated only via
its interface methods

September 11, 2019 http://csg.csail.mit.edu/6.375 L04-5

…but first the basics

Finite State Machines (FSMs)

 FSMs are a much studied mathematical object
like the Boolean Algebra

 FSMs are used extensively in software as well

 A computer (in fact any digital hardware) is an FSM,
though we don’t think of it as such!

 Synchronous Sequential Circuits are a method
to implement FSMs in hardware

outputinput

Combinational
logic

state Next
state

clock

June 14, 2019
7-6

D Flip-flop with Write Enable
The building block of Sequential Circuits

D
Q

D

C

EN

C

D

Q

EN

D
QD

C

EN

0
1

Data is captured only if EN is on

EN D Qt Qt+1

0 X 0 0

0 X 1 1

1 0 X 0

1 1 X 1

hold

copy
input

No need to show
the clock explicitly

t1 t2 t3

June 14, 2019
7-7

Registers

Register: A group of flip-flops with a common
clock and enable

Register file: A group of registers with a common
clock, a shared set of input and output ports

DDDDDDDD

En

June 14, 2019
7-8

Clocked Sequential Circuits

 In this class we will deal with only clocked
sequential circuits

 We will also assume that all flip-flops are
connected to the same clock

 To avoid clutter, the clock input will be implicit
and not shown in diagrams

 Clock inputs are not needed in BSV descriptions
unless we design multi-clock circuits

June 14, 2019
7-9

An example

Modulo-4 counter

Prev State NextState

q1q0 inc = 0 inc = 1

00 00 01

01 01 10

10 10 11

11 11 00

q0t+1 = ~inc∙q0t + inc∙~q0t

= inc  q0t

q1t+1 = ~inc∙q1t + inc∙~q1t∙q0t + inc∙q1t∙~q0t

= ~inc∙q1t + inc∙(q1t  q0t)

00 01

1011

inc=1

inc=1

inc=1inc=1

inc=0 inc=0

inc=0 inc=0

Finite State
Machine (FSM)
representation

June 14, 2019
7-10

Circuit for the modulo counter using
D flip-flops with enables
 Use two D flip-flops, q0 and q1, to store the counter value

 Notice, the state of flip-flop changes only when inc is true

q0

q1

inc

{q1t+1,q0t+1} = {(q1t  q0t), q0t } (assume inc is True)

June 14, 2019
7-11

Sequential Circuit as a module
with Interface

 A module has internal state and an interface

 The internal state can be read and manipulated only by its
interface methods

 An action method specifies which state elements are to be
modified; it has an enable wire which must be true to execute
the action

 Actions are atomic -- either all the specified state elements
are modified or none of them are modified (no partially
modified state is visible)

 Informally we refer to the interface of a module as its type

interface Counter;
method Action inc;
method Bit#(2) read;

endinterface

A module in Bluespec is like a class definition in Java or C++

Modulo-4
counterin

c

re
a
d 2

September 11, 2019 http://csg.csail.mit.edu/6.375 L04-12

Modulo-4 counter:
An implementation in Bluespec

interface Counter;
method Action inc;
method Bit#(2) read;

endinterface

module mkCounter(Counter);
Reg#(Bit#(2)) cnt <- mkReg(0);
method Action inc;

cnt <= {cnt[1]^cnt[0],~cnt[0]};
endmethod
method Bit#(2) read;

return cnt;
endmethod

endmodule

State specification

Initial value

Modulo-4
counteri

n
c

r
e
a
d 2

instantiate

q0t+1 = ~q0t

q1t+1 = q1t  q0t

Action to specify
how the value of the
cnt is to be set

t+1 ttt

Register
assignment

type

September 11, 2019 http://csg.csail.mit.edu/6.375 L04-13

Modulo-4 counter

The generated circuit

module mkCounter(Counter);
Reg#(Bit#(2)) cnt <- mkReg(0);
method Action inc;

cnt <={cnt[1]^cnt[0],~cnt[0]};
endmethod
method Bit#(2) read;

return cnt;
endmethod

endmodule

i
n
c

r
e
a
d

2

1

cnt0

cnt1

September 11, 2019 http://csg.csail.mit.edu/6.375 L04-14

GCD: Euclid’s Algorithm

Euclid’s algorithm for computing the Greatest
Common Divisor (GCD):

a: 15 b: 6

9 6 subtract

3 6 subtract

6 3 swap

3 3 subtract

0 3 subtract
answer

September 11, 2019 http://csg.csail.mit.edu/6.375 L04-15

GCD module

s
ta

rt

GCD

b
u
s
y

g
e
tR

e
s
u
lt

re
a
d
y

en en

interface GCD;
method Action start (Bit#(32) a, Bit#(32) b);
method ActionValue#(Bit#(32)) getResult;
method Bool busy;
method Bool ready;

endinterface

GCD can be started if the
module is not busy;
Results can be read when
ready

data result

September 11, 2019 http://csg.csail.mit.edu/6.375 L04-16

module mkGCD (GCD);

Reg#(Bit#(32)) x <- mkReg(0); Reg#(Bit#(32)) y <- mkReg(0);

Reg#(Bool) busy_flag <- mkReg(False);

rule gcd;

if (x >= y) begin x <= x – y; end //subtract

else if (x != 0) begin x <= y; y <= x; end //swap

endrule

method Action start(Bit#(32) a, Bit#(32) b) ;

x <= a; y <= b; busy_flag <= True;

endmethod

method ActionValue#(Bit#(32)) getResult ;

busy_flag <= False; return y;

endmethod

method Bool busy

= busy_flag;

method Bool ready

= (x==0);

endmodule

GCD implementation

Assume b != 0

Rule gcd will execute repeatedly
until x becomes 0

interface GCD;
method Action start(Bit#(32) a, Bit#(32) b);
method ActionValue#(Bit#(32)) getResult;
method Bool busy;
method Bool ready;

endinterface

I
ns

ta
nt

ia
te

st

at
e

Type

start should be called only
if the busy is false;
getResult should be called
only when ready is true.

s
ta

rt

GCD

b
u
s
y

g
e
tR

e
s
u
lt

re
a
d
y

September 11, 2019 http://csg.csail.mit.edu/6.375 L04-17

Method calls

 Value method: Only observe the internal state

 let counterValue = mod4counter.read;

 Bool isGcdBusy = gcd.busy;

 Action method: Updates the state of the module

 mod4counter.inc;

 gcd.start(13,27);

 ActionValue#(t): Updates the state and returns a value

 let resultGcd <- gcd.getResult;

Notice the use of ‘<-’ instead of ‘=‘

 Suppose we wrote

 let badResultGCD = gcd.getResult;

 then the type of badResultGCD would be

ActionValue#(t) instead of t.

 ‘=‘ just names the value on the right hand side while
‘<-’ indicates a side effect in addition to a return value

September 11, 2019 http://csg.csail.mit.edu/6.375 L04-18

Rule

 A rule has a name (e.g., gcd)

 A rule is a collection of actions, which invoke
methods

 All actions in a rule execute in parallel

 A rule can execute any time and when it executes
all of its actions must execute

rule gcd;

if (x >= y) begin x <= x – y; end //subtract

else if (x != 0) begin x <= y; y <= x; end //swap

endrule

A module may contain rules

What is meaning of this?

t+1 tt+1t

Swap!

September 11, 2019 http://csg.csail.mit.edu/6.375 L04-19

Parallel Composition of Actions &
Double-Writes

 Parallel composition, and consequently a rule
containing it, is illegal if a double-write possibility
exists

 The Bluespec compiler rejects a program if there is
any possibility of a double write in a rule or method

rule one;

y <= 3; x <= 5; x <= 7; endrule Double write

Possibility of a
double write

No double write
rule two;

y <= 3; if (b) x <= 7; else x <= 5; endrule

rule three;

y <= 3; x <= 5; if (b) x <= 7; endrule

September 11, 2019 http://csg.csail.mit.edu/6.375 L04-20

Guarded interfaces

 Make the life of the programmers easier: Include some
checks (not busy, ready, ...) in the method definition itself, so
that the user does not have to test the applicability of the
method explicitly from outside

 Guarded Interface:

 Every method has a guard (rdy wire)

 The value returned by a method is
meaningful only if its guard is true

 Every action method has an enable signal
(en wire) and it can be invoked (en can
be set to true) only if its guard is true

en and rdy wires
are implicit;
derived by the
type of the method

September 11, 2019 http://csg.csail.mit.edu/6.375 L04-21
s
ta

rt

GCD

g
e
tR

e
s
u
lt

rdyrdy

en en

interface GCD;
method Action start (Bit#(32) a, Bit#(32) b);
method ActionValue#(Bit#(32)) getResult;
method Bool busy;
method Bool ready;

endinterface

module mkGCD (GCD);

Reg#(Bit#(32)) x <- mkReg(0); Reg#(Bit#(32)) y <- mkReg(0);

Reg#(Bool) busy_flag <- mkReg(False);

rule gcd;

if (x >= y) begin x <= x – y; end //subtract

else if (x != 0) begin x <= y; y <= x; end //swap

endrule

method Action start(Bit#(32) a, Bit#(32) b) ;

x <= a; y <= b; busy_flag <= True;

endmethod

method ActionValue#(Bit#(32)) getResult ;

busy_flag <= False; return y;

endmethod

endmodule

GCD with Guards

Assume b != 0

interface GCD;
method Action start (Bit#(32) a, Bit#(32) b);
method ActionValue#(Bit#(32)) getResult;

endinterface

if (!busy_flag);

if (busy_flag&&(x==0));

Guard?

September 11, 2019 http://csg.csail.mit.edu/6.375 L04-22

Rules with guards

 Like a method, a rule can also have a guard

 A rule can execute only if it’s guard is true, i.e., if
the guard is false the rule has no effect

 True guards can be omitted. Equivalently, the
absence of a guard means the guard is always true

 For example we can attach a guard to gcd to
prevent its unnecessary execution:

rule foo if (p);

begin x1 <= e1; x2 <= e2; end

endrule

guard Syntax: In rules,
“if” is optional
before the guard!

rule gcd if (busy_flag);

if (x >= y) begin x <= x – y; end //subtract

else if (x != 0) begin x <= y; y <= x; end //swap

endrule

September 11, 2019 http://csg.csail.mit.edu/6.375 L04-23

First-In-First-Out queue (FIFO)

 In hardware, fifo have fixed size
which is often as small as 1, and
therefore the producer blocks
when enqueuing into a full fifo and
the consumer blocks when
dequeueing from an empty fifo

 FIFO data structure is used
extensively both in hardware and
software to connect things

September 11, 2019 http://csg.csail.mit.edu/6.375 L04-24

not full

not empty

not empty

n

n

rdy

en

rdy

en

rdy

e
n
q

d
e
q

fi
rs

t

FIFO

module mkFifo (Fifo#(1, Bit#(n)));
Reg#(Bit#(n)) d <- mkRegU;
Reg#(Bool) v <- mkReg(False);
method Action enq(Bit#(n) x)
v <= True; d <= x;

endmethod
method Action deq
v <= False;

endmethod
method Bit#(n) first
return d;

endmethod
endmodule

One-Element FIFO Implementation
with guards

not full

not empty

not empty

n

n

rdy

en

rdy

en

rdy

e
n
q

d
e
q

fi
rs

t

FIFO

if (!v);

if (v);

if (v);

Syntax: lack of semicolon
turns the if into a guard

Guard expression is what is connected to
the rdy wire of a method

September 11, 2019 http://csg.csail.mit.edu/6.375 L04-25

Streaming a function using a
FIFO with guarded interfaces

inQ

f

outQ

rule stream;
outQ.enq(f(inQ.first));
inQ.deq;

endrule

The implicit guards of the method calls are sufficient
because a rule can execute only if the guards of all of
its method calls are true

September 11, 2019 http://csg.csail.mit.edu/6.375 L04-26

if(inQ.notEmpty && outQ.notFull)

implicit guard

Streaming a module

outQinQ

? ?

s
ta

rt

GCD

g
e
tR

e
s
u
lt

 Suppose we have a queue of pairs of numbers and we
want to compute their GCDs and put the results in an
output queue

 We can build such a system by creating the following
modules

 To glue these modules together we define two rules:
 invokeGCD to push data from inQ into gcd
 getResult to fetch result from gcd and put it into outQ

Fifo#(1,Vector#(2,t)) inQ <- mkFifo;
Fifo#(1,t) outQ <- mkFifo;
GCD gcd <- mkGCD;

September 11, 2019 http://csg.csail.mit.edu/6.375 L04-27

Streaming a module: code

rule invokeGCD ;
let x = inQ.first[0];
let y = inQ.first[1];
gcd.start(x,y);
inQ.deq;

endrule

rule getResult ;
let x <- gcd.getResult;
outQ.enq(x);

endrule Action value method

outQinQ

invoke
GCD

get
results

ta
rt

GCD

g
e
tR

e
s
u
lt

Implicit
guards?

inQ is
not
empty

gcd is
not busy

if(inQ.first.rdy && inQ.deq.rdy
&& gcd.start.rdy);

X

if(gcd.getResult.rdy
&& outQ.enq.rdy);

X

September 11, 2019 http://csg.csail.mit.edu/6.375 L04-28

Power of Abstraction:
Another GCD implementation

 A GCD module with the same interface but with twice the
throughput; uses two gcd modules in parallel

 turnI is used by the start method to direct the input to the
gcd whose turn it is and then turnI is flipped

 Similarly, turnO is used by getResult to get the output from
the appropriate gcd, and then turnO is flipped

gcd1

s
ta

rt

g
e
tR

e
s
u
lt

s
ta

rt

gcd2

g
e
tR

e
s
u
lts
ta

rt

g
e
tR

e
s
u
lt

turnI

turnO

interface GCD;
method Action start (Bit#(32) a, Bit#(32) b);
method ActionValue#(Bit#(32)) getResult;

endinterfaceSeptember 11, 2019 http://csg.csail.mit.edu/6.375 L04-29

module mkMultiGCD (GCD);

GCD gcd1 <- mkGCD();

GCD gcd2 <- mkGCD();

Reg#(Bool) turnI <- mkReg(False);

Reg#(Bool) turnO <- mkReg(False);

method Action start(Bit#(32) a, Bit#(32) b);

if (turnI) gcd1.start(a,b); else gcd2.start(a,b);

turnI <= !turnI;

endmethod

method ActionValue (Bit#(32)) getResult;

Bit#(32) y;

if (turnO) y <- gcd1.getResult

else y <- gcd2.getResult;

turnO <= !turnO

return y;

endmethod

endmodule

High-throughput GCD code

interface GCD;
method Action start (Bit#(32) a, Bit#(32) b);
method ActionValue#(Bit#(32)) getResult;

endinterface

gcd1

s
ta

rt

g
e
tR

e
s
u
lt

s
ta

rt

gcd2

g
e
tR

e
s
u
lt

s
ta

rt

g
e
tR

e
s
u
lt

turnI turnO

September 11, 2019 8-30

