
Increasing concurrency using
bypasses and EHRs

Arvind
Computer Science & Artificial Intelligence Lab.

Massachusetts Institute of Technology

September 18, 2019 http://csg.csail.mit.edu/6.375 L07-1

Up-Down counter

§ methods up and down can
be ready at the same time
but if they are executed
concurrently a double write
error will occur

§ Hence, rules producer and
consumer cannot be allowed
to execute concurrently
either

module mkUpDownCounter (UpDownCounter);
Reg#(Bit#(8)) ctr <- mkReg (0);
method ActionValue#(Bit #(8)) up if (ctr < 255);

ctr <= ctr+1; return ctr;
endmethod
method ActionValue#(Bit #(8)) down if (ctr > 0);

ctr <= ctr-1; return ctr;
endmethod

endmodule

UpDownCounter Bit#(8) x
<- mkUpDownCounter;

rule producer;
... x.up ...;

endmethod
rule consumer;

... x.down ...;
endmethod

Using the counter

Is it possible
to execute up
and down
concurrently?

September 18, 2019 http://csg.csail.mit.edu/6.375 L07-2

Up-Down counter
How to avoid the double write error?

When producer’s rdy is True, it
makes consumer’s en False,
preventing it from making any
state updates, and hence, no
double write error

UpDownCounter Bit#(8) x
<- mkUpDownCounter;

rule producer;
... x.up ...;

endmethod
rule consumer;

... x.down ...;
endmethod

do
w

n
upup

do
w

n

producer
rdy

consumer
rdy

up
do

w
n

Counter
Impl.

Can we design an up
and down counter
where the up and down
methods won’t conflict?

September 18, 2019 http://csg.csail.mit.edu/6.375 L07-3

Rules for pipeline

fifo1inQ

f0 f1 f2

fifo2 outQ

rule stage1;
fifo1.enq(f0(inQ.first));
inQ.deq; endrule

rule stage2;
fifo2.enq(f1(fifo1.first));
fifo1.deq; endrule

rule stage3;
outQ.enq(f2(fifo2.first));
fifo2.deq; endrule

§ These rules must execute concurrently
in a pipelined system
§ They can execute concurrently, only if

fifos allow concurrent enq and deq
§ In our one-element fifo design, enq

and deq were mutually exclusive!

No
pipelining

September 18, 2019 http://csg.csail.mit.edu/6.375 L07-4

module mkFifo (Fifo#(1, Bit#(n)));
Reg#(Bit#(n)) d <- mkRegU;
Reg#(Bool) v <- mkReg(False);
method Action enq(Bit#(n) x) if (!v);

v <= True; d <= x;
endmethod
method Action deq if (v);

v <= False;
endmethod
method Bit#(n) first if (v);

return d;
endmethod

endmodule

One-Element FIFO

n

n

en
q

de
q

fir
st

FIFO

Can we make a fifo where
enq and deq can be done
concurrently ?

September 18, 2019 http://csg.csail.mit.edu/6.375 L07-5

How about a Two-Element FIFO?

§ Initially, both va and vb are false
§ First enq will store the data in da and mark va

true
§ An enq can be done as long as vb is false;
§ A deq can be done as long as va is true;
§ Assume, if there is only one element in the

FIFO, it resides in da

db da

vb va

September 18, 2019 http://csg.csail.mit.edu/6.375 L07-6

module mkCFFifo (Fifo#(2, Bit#(n)));
//instantiate da, va, db, vb
rule canonicalize if (vb && !va);

da <= db;
va <= True;
vb <= False;

endrule
method Action enq(Bit#(n) x) if (!vb);

begin db <= x; vb <= True; end
endmethod
method Action deq if (va);

va <= False;
endmethod
method Bit#(n) first if (va);

return da;
endmethod

endmodule

Two-Element FIFO

Both enq and deq can
execute concurrently
but both are mutually
exclusive with
canonicalize.

db da

vb va

Canonicalize rule introduces a
dead cycle after an enq/deq

September 18, 2019 http://csg.csail.mit.edu/6.375 L07-7

Limitations of registers in Bluespec

§ Using only registers, no communication can
take place in the same clock cycle between
§ two methods or
§ two rules or
§ a rule and a method

§ At times bypassing values between rules and
methods is necessary to achieve high
performance

September 18, 2019 http://csg.csail.mit.edu/6.375 L07-8

Bypassing in Bluespec
§ In Bluespec one thinks of bypassing in terms of reducing the

number of cycles it takes to execute two conflicting rules or
methods

§ For example, design a FIFO, where a rule can perform an enq
on a full FIFO provided another rule performs a deq
simultaneously
§ requires signaling from deq to enq

rule ra;
x <= y+1;

endrule
rule rb;

y <= x+2;
endrule

§ Another example : Transform the rules on
the right so that they execute
concurrently, and behave functionally as if
ra happened before rb (ra <rb)
§ requires communicating the value of x from

ra to rb in the same cycle
Not possible in the subset of Bluespec you
have seen so far!

September 18, 2019 http://csg.csail.mit.edu/6.375 L07-9

New types of registers to enable
bypassing

r[0]
normal

r[1]
Bypass

D Q
0

1

0

1

D Q
0

1

0

1

r[0]
normal

r[1]
Bypass

w[0]
normal

w[1]
priority

w[0]
normal

w[1]
priority

Bypass Reg

Priority Reg EHR
Functionally: w[0]<w[1]

D Q
0

1

Normal Reg

w
D Q

0

1w

Functionally: r[0]<w; w<r[1]

Functionally: w[0]<w[1]; w[0]<r[1]
r[0]<w[0]; r[0]<w[1]; r[1]<w[1];

September 18, 2019 http://csg.csail.mit.edu/6.375 L07-10

r[0]
normal

r[1]

w[0]

w[1]

Ephemeral History Register (EHR)
Dan Rosenband [MEMOCODE’04]

D Q0

1
r[0] < w[0]

w[0] < w[1]

r[1] > w[0]

§ r[1] returns:
§ the current state if w[0] is not enabled
§ the value being written if w[0] is enabled

§ w[1] has higher priority than w[0]

Bypass
0

1

We will use EHRs to enhance concurrency in our
designs but EHRs because internal bypass can
increase the critical combinational path length

September 18, 2019 http://csg.csail.mit.edu/6.375 L07-11

Do up and down counter using
EHRs
module mkUpDownCounter (UpDownCounter);

Reg#(Bit#(8)) ctr <- mkReg (0);
method ActionValue#(Bit#(8)) up if (ctr < 255);

ctr <= ctr+1; return ctr;
endmethod
method ActionValue#(Bit#(8)) down if (ctr > 0);

ctr <= ctr-1; return ctr;
endmethod

endmodule

module mkUpDownCounter (UpDownCounter);
Ehr#(2, Bit#(8)) ctr <- mkEhr (0);
method ActionValue#(Bit#(8)) up if (ctr[0] < 255);

ctr[0] <= ctr[0]+1; return ctr[0];
endmethod
method ActionValue#(Bit#(8)) down if (ctr[1] > 0);

ctr[1] <= ctr[1]-1; return ctr[1];
endmethod

endmodule

Replace ctr Reg
by ctr EHR

Assuming,
functionally
we want to
execute up

before down,
i.e., up < down

September 18, 2019 http://csg.csail.mit.edu/6.375 L07-12

Do up and down counter using
EHRs: Analysis
module mkUpDownCounter (UpDownCounter);

Ehr#(2, Bit#(8)) ctr <- mkEhr (0);
method ActionValue#(Bit#(8)) up if (ctr[0] < 255);

ctr[0] <= ctr[0]+1; return ctr[0];
endmethod
method ActionValue#(Bit#(8)) down if (ctr[1] > 0);

ctr[1] <= ctr[1]-1; return ctr[1];
endmethod

endmodule

§ Method down will the see the ctr value being written
by method up

§ Method down’s write of ctr value will overwrite the
ctr write by method up

§ The functionality of this counter is the same as the
one using registers, except for one edge case
§ EHR version would allow method down to be

executed even when ctr is 0 provided method up
is executed at the same time

September 18, 2019 http://csg.csail.mit.edu/6.375 L07-13

Inside the Up-Down counter with
EHRs

do
w

n
up up

do
w

n

+1

>0

<255

-1

module mkUpDownCounter (UpDownCounter);
Ehr#(2, Bit#(8)) ctr <- mkEhr (0);
method ActionValue#(Bit#(8)) up if (ctr[0] < 255);

ctr[0] <= ctr[0]+1; return ctr[0];
endmethod
method ActionValue#(Bit#(8)) down if (ctr[1] > 0);

ctr[1] <= ctr[1]-1; return ctr[1];
endmethod

endmodule

Ct
r

EH
RW[0]

W[1]
R[1]

R[0]

No double write
problem but
potentially a
longer
combinational path

September 18, 2019 http://csg.csail.mit.edu/6.375 L07-14

Using the EHR Up-Down counter

§ No need to prevent the
execution of the consumer!

§ For proper circuit generation we
need to reflect in the interface
definition of the counter
whether up and down methods
can be called concurrently

UpDownCounter Bit#(8) x
<- mkUpDownCounter;

rule producer;
... x.up ...;

endmethod
rule consumer;

... x.down ...;
endmethod

do
w

n
upup

do
w

n

producer
rdy

consumer
rdy

up
do

w
n

Counter
Impl.

September 18, 2019 http://csg.csail.mit.edu/6.375 L07-15

Conflict Matrix
§ We can define a Conflict Matrix (CM), which

specifies for a given pair of methods, or a pair of
rules, or a method and rule, the effect of
concurrent execution
§ ra < rb : ra and rb can be executed concurrently; the net

effect is as if ra executed before rb
§ ra CF rb: ra and rb can be executed concurrently; the net

effect is the same as (ra<rb) and (rb<ra)
§ ra C rb: ra and rb Conflict; either the concurrent execution

will cause a double-write error or the resulting effect is
neither (ra<rb) nor (rb<ra)

§ ra ME rb: the guards of ra and rb are mutually exclusive
and thus, ra and rb can never be rdy together

September 18, 2019 http://csg.csail.mit.edu/6.375 L07-16

Conflict Matrix of Primitive modules
Registers and EHRs

EHR.r0 EHR.w0 EHR.r1 EHR.w1

Ehr.r0 CF <

Ehr.w0 > C

Ehr.r1

Ehr.w1

Register

EHR

>

CF >

>

<

<

CF
>

<

C

reg.r reg.w
reg.r CF <
reg.w > C

CF
<

September 18, 2019 http://csg.csail.mit.edu/6.375 L07-17

CMs for Up-Down counter
with and without EHR
module mkUpDownCounter (UpDownCounter);

Reg#(Bit#(8)) ctr <- mkReg (0);
method ActionValue#(Bit#(8)) up if (ctr < 255);

ctr <= ctr+1; return ctr;
endmethod
method ActionValue#(Bit#(8)) down if (ctr > 0);

ctr <= ctr-1; return ctr;
endmethod

endmodule

module mkUpDownCounter (UpDownCounter);
Ehr#(2, Bit#(8)) ctr <- mkEhr (0);
method ActionValue#(Bit#(8)) up if (ctr[0] < 255);

ctr[0] <= ctr[0]+1; return ctr[0];
endmethod
method ActionValue#(Bit#(8)) down if (ctr[1] > 0);

ctr[1] <= ctr[1]-1; return ctr[1];
endmethod

endmodule

up down

up C C
down C C

up down

up C <
down > C

Given the CM, we can
generate proper
hardware for the
users of these
different modules

September 18, 2019 http://csg.csail.mit.edu/6.375 L07-18

Designing FIFOs using EHRs
§ Pipeline FIFO: An enq into a full FIFO is

permitted provided a deq from the FIFO is
done simultaneously (deq < enq)

§ Bypass FIFO: A deq from an empty FIFO is
permitted provided an enq into the FIFO is
done simultaneously (enq < deq)

§ Conflict-Free FIFO: Both enq and deq are
permitted concurrently as long as the FIFO is
not-full and not-empty
§ The effect of enq is not visible to deq, and vise versa

We will derive such FIFOs starting with one
or two element FIFO implementations

September 18, 2019 http://csg.csail.mit.edu/6.375 L07-19

module mkFifo (Fifo#(1, Bit#(n)));
Reg#(Bit#(n)) d <- mkRegU;
Reg#(Bool) v <- mkReg(False);

method Action enq(Bit#(n) x) if (!v);
v <= True; d <= x;

endmethod
method Action deq if (v);

v <= False;
endmethod
method Bit#(n) first if (v);

return d;
endmethod

endmodule

Making One-Element FIFO
into a Pipeline FIFO

Pipelined FIFO CM

Ehr#(2, Bool) v <- mkEhr(False);

v[0]
(v[0]);

(v[0]);

v[1]
(!v[1]);

- enq ‘sees’ deq
- v has the right

value in all cases
- no double write

error

enq deq first

enq C > >
deq < C >
first < < CF

September 18, 2019 http://csg.csail.mit.edu/6.375 L07-20

module mkFifo (Fifo#(1, Bit#(n)));
Reg#(t) d <- mkRegU;
Reg#(Bool) v <- mkReg(False);

method Action enq(Bit#(n) x) if (!v);
v <= True; d <= x;

endmethod
method Action deq if (v);

v <= False;
endmethod
method Bit#(n) first if (v);

return d;
endmethod

endmodule

Making One-Element FIFO
into a Bypassed FIFO

Ehr#(2, Bool) v <- mkEhr(False);

v[0]

(v[1]);

(v[1]);

v[1]

(!v[0]);

- deq ‘sees’ enq
- v and d have

the right
values in all
cases

- no double
write error

d[1];

Ehr#(2, Bit#(n)) d <- mkEhr(?);

d[0] <= x;

Bypass FIFO CM
enq deq first

enq C < <

deq > C >

first > < CF

September 18, 2019 http://csg.csail.mit.edu/6.375 L07-21

module mkCFFifo (Fifo#(2, Bit#(n)));
Reg#(t) da <- mkRegU();
Reg#(Bool) va <- mkReg(False);
Reg#(t) db <- mkRegU();
Reg#(Bool) vb <- mkReg(False)
rule canonicalize if (vb && !va);

da <= db; va <= True; vb <= False;
endrule
method Action enq(t x) if (!vb);

begin db <= x; vb <= True; end
endmethod
method Action deq if (va);

va <= False;
endmethod
method t first if (va);

return da;
endmethod

endmodule

Two-Element FIFO

1. replace all registers by
EHRs

2. since enq and deq happen
first, assign them ports 0

3. assign canocalize port 1

db da

vb va

Ehr#(2, Bit#(n)) da <- mkEhr(?);
Ehr#(2, Bool) va <- mkEhr(False);
Ehr#(2, Bit#(n)) db <- mkEhr(?);
Ehr#(2, Bool) vb <- mkEhr(False);
rule canonicalize (vb[1] && !va[1]);

da[1] <= db[1]; va[1] <= True;
vb[1] <= False; endrule

method Action enq(Bit#(n) x) if (!vb[0]);
db[0] <= x; vb[0] <= True;

endmethod enq deq first cano
enq C CF CF <
deq CF C > <
first CF < CF <
cano > > > C

method Action deq if (va[0]);
va[0] <= False;

endmethod
method Bit#(n) first if (va[0]);

return da[0];

In any given cycle simultaneous enq and
deq are permitted provided the FIFO is
neither full nor empty

September 18, 2019 http://csg.csail.mit.edu/6.375 L07-22

Revisiting the rules for pipeline

fifo1inQ

f0 f1 f2

fifo2 outQ

rule stage1;
fifo1.enq(f0(inQ.first));
inQ.deq; endrule

rule stage2;
fifo2.enq(f1(fifo1.first));
fifo1.deq; endrule

rule stage3;
outQ.enq(f2(fifo2.first));
fifo2.deq; endrule

These rules will execute
concurrently provided we use
Pipeline or Conflict-Free
fifos

enq deq first

enq C > >
deq < C >
first < < CF

enq deq first

enq C CF >
deq CF C >
first < < CF

Pipeline
fifo

Conflict-
free fifo

September 18, 2019 http://csg.csail.mit.edu/6.375 L07-23

Using EHRs
§ EHRs can be used to design a variety of modules to

reduce the conflict between its methods
§ FIFO, RF, Score Board, memory systems

§ This way the user of such modules only has to
understand the CM of the module, and not whether
or how EHRs were used internally

§ However, modules that use EHRs, e.g., bypass
FIFO or pipeline FIFO, can increase the length of
combinational paths and thus, affect the clock
period

September 18, 2019 http://csg.csail.mit.edu/6.375 L07-24

Serializability of Concurrent Execution
of Rules

September 18, 2019 http://csg.csail.mit.edu/6.375 L07-25

Serializability
§ We could say that the concurrent execution of rules or

methods is allowed as long as no double write error is
possible

§ In fact, we impose the additional constraint of serializability
on the concurrent execution of rules:

§ The serializability constrain is imposed to make it easier to
analyze the behavior of concurrent systems; it is a common
and well established practice all distributed systems and
databases

Serializability means that a concurrent execution
of rules must match some serial execution of
rules, aka one-rule-at-a-time execution of rules

In the hardware domain the idea of serializability is
new at the design level but it has been used
extensively in proving properties of the design

September 18, 2019 http://csg.csail.mit.edu/6.375 L07-26

One-rule-at-a-time semantics of
Bluespec

Repeatedly:
Select any rule that is ready to execute
Compute the state updates
Make the state updates

Any legal behavior of a Bluespec program can
be explained by observing the state updates
obtained by applying one rule at a time

However, for performance we execute multiple
rules concurrently whenever possible without
violating the one-rule-at-a-time semantics

September 18, 2019 http://csg.csail.mit.edu/6.375 L07-27

Concurrent execution of rules

§ What results will these examples produce if we
executed the two rules in each example
concurrently
§ There is no possibility of a double-write error
§ But what does it mean to execute these rules

concurrently

rule ra;
x <= x+1;

endrule
rule rb;

y <= y+2;
endrule

Example 1
rule ra;

x <= y+1;
endrule
rule rb;

y <= x+2;
endrule

Example 2
rule ra;

x <= y+1;
endrule
rule rb;

y <= y+2;
endrule

Example 3

September 18, 2019 http://csg.csail.mit.edu/6.375 L07-28

Concurrent Execution

rule ra;
xt+1 <= xt+1;

endrule
rule rb;

yt+1 <= yt+2;
endrule

Example 1 Example 2 Example 3
rule ra;

xt+1 <= yt+1;
endrule
rule rb;

yt+1 <= xt+2;
endrule

rule ra;
xt+1 <= yt+1;

endrule
rule rb;

yt+1 <= yt+2;
endrule

§ We are allowed to read and write a register in the same
clock cycle and when we do that the result of the read is
the old value of the register; the value of the write is
not visible until the next clock cycle
§ We show these values by writing a time as a superscript.

Thus, xt is the old value and xt+1 is the new value; For any
x, if there is no xt+1 defined, then xt+1 = xt

§ Assuming initially x and y are both 0, concurrent
execution of the two rules in each of the three example
will result in value 1 in x and 2 in y

September 18, 2019 http://csg.csail.mit.edu/6.375 L07-29

Executing ra before rb (ra < rb)

rule ra;
xt+1 <= xt+1;

endrule
rule rb;

yt+2 <= yt+1+2;
endrule

Concurrent
Execution

ra < rb

rb < ra

Example 1 Example 2 Example 3

Ex 1 Ex 2 Ex 3
Final value of (x,y) given the initial values (0,0)

rule ra;
xt+1 <= yt+1;

endrule
rule rb;

yt+2 <= xt+1+2;
endrule

rule ra;
xt+1 <= yt+1;

endrule
rule rb;

yt+2 <= yt+1+2;
endrule

(1,2) (1,2) (1,2)

(1,2) (1,3) (1,2)

September 18, 2019 http://csg.csail.mit.edu/6.375 L07-30

Executing rb before ra (rb < ra)

rule ra;
xt+2 <= xt+1+1;

endrule
rule rb;

yt+1 <= yt+2;
endrule

Concurrent
Execution

ra < rb

rb < ra

Example 1 Example 2 Example 3

Ex 1 Ex 2 Ex 3
Final value of (x,y) given the initial values (0,0)

rule ra;
xt+2 <= yt+1+1;

endrule
rule rb;

yt+1 <= xt+2;
endrule

rule ra;
xt+2 <= yt+1+1;

endrule
rule rb;

yt+1 <= yt+2;
endrule

(1,2) (1,2) (1,2)

(1,2) (1,3) (1,2)

(1,2) (3,2) (3,2)

September 18, 2019 http://csg.csail.mit.edu/6.375 L07-31

Can these rules execute concurrently?
(without violating the one-rule-at-a-time-semantics)

rule ra;
x <= x+1;

endrule
rule rb;

y <= y+2;
endrule

Concurrent
Execution

ra < rb

rb < ra

Example 1

Yes,
Conflict-
Free (CF)

Example 2 Example 3

≠ ≠ ≠

No,
Conflict

Yes,
ra<rb

Ex 1 Ex 2 Ex 3
Final value of (x,y) given the initial values (0,0)

===

rule ra;
x <= y+1;

endrule
rule rb;

y <= x+2;
endrule

rule ra;
x <= y+1;

endrule
rule rb;

y <= y+2;
endrule

(1,2) (1,2) (1,2)

(1,2) (1,3) (1,2)

(1,2) (3,2) (3,2)

September 18, 2019 http://csg.csail.mit.edu/6.375 L07-32

Why is serializability important?

initially (x,y) are (0,0)

Concurrent (1,2)
Execution

ra < rb (1,3)

rb < ra (3,2)

rule ra;
x <= y+1;

endrule
rule rb;

y <= x+2;
endrule

§ As you have seen it is straight forward to
build hardware so that ra and rb will
execute concurrently. However, in
general, it is difficult to derive the
behavior of the resulting circuit

§ Serializability, lets us apply one rule at a
time in some order to derive the
behavior of the composite system

§ Without serializabilty, the atomicity of
each rule has no meaning in a complex
system

§ Even though serializability imposes an
additional constraint, and will make us
reject some RTL implementations for a
Bluespec design, in practice its
advantages far outweigh its
disadvantages in debugging and
verification

September 18, 2019 http://csg.csail.mit.edu/6.375 L07-33

The derivation of CM
§ There is a natural ordering between the values of CM entries

§ This ordering permits us to take intersections of conflict
information, e.g.,
§ {>}Ç{<,>} = {>}
§ {>}Ç{<} = {}

§ We use the CM of primitive modules (register, EHR) to derive
the CM for the interface methods of a module

CF = {<,>}

{<} {>}

C = {}

September 18, 2019 http://csg.csail.mit.edu/6.375 L07-34

Deriving the Conflict Matrix (CM)
of a module interface

§ Let g1 and g2 be the two methods defined by a
module, such that

mcalls(g1)={g11,g12...g1n}
mcalls(g2)={g21,g22...g2m}

§ CM[g1,g2] = conflict(g11,g21) Ç conflict(g11,g22) Ç...
Ç conflict(g12,g21) Ç conflict(g12,g22) Ç...
…
Ç conflict(g1n,g21) Ç conflict(g1n,g22) Ç...

§ conflict(x,y) = if x and y are methods of the same
module then CM[x,y] else CF

Compiler can derive the CM for a module by
starting with the innermost modules in the
module instantiation tree

Methods
called by g1

September 18, 2019 http://csg.csail.mit.edu/6.375 L07-35

CM for rules
§ The conflict between two rules or a rule and a method can be

derived in a similar manner by examining the CM properties
of the constituent method calls

rule ra;
x <= x+1;

endrule
rule rb;

y <= y+2;
endrule

Example 1
rule ra;

x <= y+1;
endrule
rule rb;

y <= x+2;
endrule

Example 2
rule ra;

x <= y+1;
endrule
rule rb;

y <= y+2;
endrule

Example 3

ra rb
ra C CF
rb CF C

ra rb
ra C C
rb C C

ra rb
ra C <
rb > C

September 18, 2019 http://csg.csail.mit.edu/6.375 L07-36

method Action enq(t x) if (!vb);
if (va) begin db <= x; vb <= True; end

else begin da <= x; va <= True; end
endmethod
method Action deq if (va);
if (vb) begin da <= db; vb <= False; end

else begin va <= False; end
endmethod

Two-Element FIFO
Deriving the CM

db da

vb va

We can derive a conservative CM by ignoring the conditionals
mcalls(enq) = {vb.r, va.r, db.w, vb.w, da.w, va.w}
mcalls(deq) = {va.r, vb.r, da.w, db.r, vb.w, va.w}

CM[enq,deq] =
CM[vb.r,va.r]ÇCM[vb.r,vb.r]ÇCM[vb.r,da.w]ÇCM[vb.r,db.r]ÇCM[vb.r,vb.w]ÇCM[vb.r,va.w]

ÇCM[va.r,va.r]ÇCM[va.r,vb.r]ÇCM[va.r,da.w]ÇCM[va.r,db.r]ÇCM[va.r,vb.w]ÇCM[va.r,va.w]
ÇCM[db.w,va.r]ÇCM[db.w,vb.r]ÇCM[db.w,da.w]ÇCM[db.w,db.r]ÇCM[db.w,vb.w]ÇCM[db.w,va.w]
ÇCM[vb.w,va.r]ÇCM[vb.w,vb.r]ÇCM[vb.w,da.w]ÇCM[vb.w,db.r]ÇCM[vb.w,vb.w]ÇCM[vb.w,va.w]
ÇCM[da.w,va.r]ÇCM[da.w,vb.r]ÇCM[da.w,da.w]ÇCM[da.w,db.r]ÇCM[da.w,vb.w]ÇCM[da.w,va.w]
ÇCM[va.w,va.r]ÇCM[va.w,vb.r]ÇCM[va.w,da.w]ÇCM[va.w,db.r]ÇCM[va.w,vb.w]ÇCM[va.w,va.w]

= CF Ç {<} Ç CF Ç {<} Ç {>} Ç {>} Ç C Ç C Ç {>} Ç C
= C

September 18, 2019 http://csg.csail.mit.edu/6.375 L07-37

