
Serializability of Concurrent Execution
of Rules

Arvind
Computer Science and Artificial Intelligence Laboratory

M.I.T.

September 23, 2019 http://csg.csail.mit.edu/6.375 L08-1

Linearizability
§ Rule atomicity says that execution no other rule appears to be

interleaved with the execution of a rule
§ This is also known as linearizability, i.e., other rules appear to

execute before or after a given rule
§ The following example has no double write error but

concurrent execution of ra and rb violates linearizability
Final value

of (x,y)
rule ra;

x <= y+1;
endrule
rule rb;

y <= x+2;
endrule

ra ; rb (1,3)

rb ; ra (3,2)

Concurrent
Execution (1,2)

≠

≠

initially x=0, y=0

September 23, 2019 http://csg.csail.mit.edu/6.375 L08-2

we say rules ra and rb conflict and
should not be executed concurrently

Serializability
§ We could say that the concurrent execution of rules or

methods is allowed as long as no double write error is
possible and the execution is linearizable

§ In fact, we impose the additional constraint of serializability
on the concurrent execution of rules:

§ The serializability constrain is imposed to make it easier to
analyze the behavior of concurrent systems; it is a common
and well established practice all distributed systems and
databases

Serializability means that a concurrent execution
of rules must match some serial execution of
rules, aka one-rule-at-a-time execution of rules

In the hardware domain the idea of serializability is
new at the design level but it has been used
extensively in proving properties of designs

September 23, 2019 http://csg.csail.mit.edu/6.375 L08-3

An example to illustrate Serializability

Parallel Executions
ra | rb | rc (1,2,3)
(ra | rb) ; rc (1,2,0) -> (1,2,4)
rc ; (ra | rb) (0,0,3) -> (1,5,3)
ra ; (rb | rc) (1,0,0) -> (1,2,4)
(rb | rc) ; ra (0,2,3) -> (3,2,3)
rb ; (ra | rc) (0,2,0) -> (3,2,3)
(ra | rc) ; rb (1,0,3) -> (1,5,3)

Any two rules can
be executed
concurrently but
not all three

rule ra;
x <= y+1;

endrule
rule rb;

y <= z+2;
endrule
rule rc;

z <= x+3;
endrule

initially
x=0,y=0,z=0

(x,y,z) after each cycle

Sequential Executions
ra ; rb ; rc (1,0,0) -> (1,2,0) -> (1,2,4)
ra ; rc ; rb (1,0,0) -> (1,0,4) -> (1,6,4)
rb ; rc ; ra (0,2,0) -> (0,2,3) -> (3,2,3)
rb ; ra ; rc (0,2,0) -> (3,2,0) -> (3,2,6)
rc ; ra ; rb (0,0,3) -> (1,0,3) -> (1,5,3)
rc ; rb ; ra (0,0,3) -> (0,5,3) -> (6,5,3)

not allowed

ra < rb

rb < rc

rc < ra

Notice ra<rb, rb<rc does not imply that ra<rc
September 23, 2019 http://csg.csail.mit.edu/6.375 L08-4

Why is serializability important?

initially (x,y) are (0,0)

Concurrent (1,2)
Execution

ra < rb (1,3)

rb < ra (3,2)

rule ra;
x <= y+1;

endrule
rule rb;

y <= x+2;
endrule

§ As you have seen it is straight forward to
build hardware so that ra and rb will
execute concurrently. However, in
general, it is difficult to derive the
behavior of the resulting circuit

§ Serializability, lets us apply one rule at a
time in some order to derive the
behavior of the composite system

§ Without serializabilty, the atomicity of
each rule has no meaning in a complex
system

§ Even though serializability imposes an
additional constraint, and will make us
reject some RTL implementations for a
Bluespec design, in practice its
advantages far outweigh its
disadvantages in debugging and
verification

September 23, 2019 http://csg.csail.mit.edu/6.375 L08-5

Conflict Matrix
§ We can define a Conflict Matrix (CM), which

specifies for a given pair of methods, or a pair of
rules, or a method and rule, the effect of
concurrent execution
§ ra < rb : ra and rb can be executed concurrently; the net

effect is as if ra executed before rb
§ ra CF rb: ra and rb can be executed concurrently; the net

effect is the same as (ra<rb) and (rb<ra)
§ ra C rb: ra and rb Conflict; either the concurrent execution

will cause a double-write error or the resulting effect is
neither (ra<rb) nor (rb<ra)

§ ra ME rb: the guards of ra and rb are mutually exclusive
and thus, ra and rb can never be rdy together

September 23, 2019 http://csg.csail.mit.edu/6.375 L08-6

The derivation of CM
§ There is a natural ordering between the values of CM entries

§ This ordering permits us to take intersections of conflict
information, e.g.,
§ {>}Ç{<,>} = {>}
§ {>}Ç{<} = {}

§ We use the CM of primitive modules (register, EHR) to derive
the CM for the interface methods of a module

CF = {<,>}

{<} {>}

C = {}

September 23, 2019 http://csg.csail.mit.edu/6.375 L08-7

Deriving the Conflict Matrix (CM)
of a module interface

§ Let g1 and g2 be the two methods defined by a
module, such that

mcalls(g1)={g11,g12...g1n}
mcalls(g2)={g21,g22...g2m}

§ CM[g1,g2] = conflict(g11,g21) Ç conflict(g11,g22) Ç...
Ç conflict(g12,g21) Ç conflict(g12,g22) Ç...
…
Ç conflict(g1n,g21) Ç conflict(g1n,g22) Ç...

§ conflict(x,y) = if x and y are methods of the same
module then CM[x,y] else CF

Compiler can derive the CM for a module by
starting with the innermost modules in the
module instantiation tree

Methods
called by g1

September 23, 2019 http://csg.csail.mit.edu/6.375 L08-8

CM for rules
§ The conflict between two rules or a rule and a method can be

derived in a similar manner by examining the CM properties
of the constituent method calls

rule ra;
x <= x+1;

endrule
rule rb;

y <= y+2;
endrule

Example 1
rule ra;

x <= y+1;
endrule
rule rb;

y <= x+2;
endrule

Example 2
rule ra;

x <= y+1;
endrule
rule rb;

y <= y+2;
endrule

Example 3

ra rb
ra C CF
rb CF C

ra rb
ra C C
rb C C

ra rb
ra C <
rb > C

September 23, 2019 http://csg.csail.mit.edu/6.375 L08-9

Example 1: Compiler Analysis
mcalls(ra) = {x.w, x.r}
mcalls(rb) = {y.w, y.r}

CM(ra, rb) =
conflict(x.w, y.w) Ç conflict(x.w, y.r)

Ç conflict(x.r, y.w) Ç conflict(x.r, y.r)
= CF Ç CF Ç CF Ç CF
= CF

Rules ra and rb can be scheduled together
without violating the one-rule-at-a-time-
semantics. We say rules ra and rb are CF

rule ra;
x <= x+1;

endrule
rule rb;

y <= y+2;
endrule

September 23, 2019 http://csg.csail.mit.edu/6.375 L08-10

Example 2: Compiler Analysis

Rules ra and rb cannot be scheduled together
without violating the one-rule-at-a-time semantics.
Rules ra and rb Conflict

mcalls(ra) = {x.w, y.r}
mcalls(rb) = {y.w, x.r}

CM(ra, rb) =
conflict(x.w, y.w) Ç conflict(x.w, x.r)

Ç conflict(y.r, y.w) Ç conflict(y.r, x.r)
= CF Ç {>} Ç {<} Ç CF
= C

rule ra;
x <= y+1;

endrule
rule rb;

y <= x+2;
endrule

September 23, 2019 http://csg.csail.mit.edu/6.375 L08-11

Example 3: Compiler Analysis

Rules ra and rb can be scheduled together
without violating the one-rule-at-a-time-
semantics.

Rule ra < rb

mcalls(ra) = {x.w, y.r}
mcalls(rb) = {y.w, y.r}

CM(ra, rb) =
conflict(x.w, y.w) Ç conflict(x.w, y.r)

Ç conflict(y.r, y.w) Ç conflict(y.r, y.r)
= CF Ç CF Ç {<} Ç CF
= {<}

rule ra;
x <= y+1;

endrule
rule rb;

y <= y+2;
endrule

September 23, 2019 http://csg.csail.mit.edu/6.375 L08-12

method Action enq(t x) if (!vb);
if (va) begin db <= x; vb <= True; end

else begin da <= x; va <= True; end
endmethod
method Action deq if (va);
if (vb) begin da <= db; vb <= False; end

else begin va <= False; end
endmethod

Two-Element FIFO
Deriving the CM

db da

vb va

We can derive a conservative CM by ignoring the conditionals
mcalls(enq) = {vb.r, va.r, db.w, vb.w, da.w, va.w}
mcalls(deq) = {va.r, vb.r, da.w, db.r, vb.w, va.w}

CM[enq,deq] =
CM[vb.r,va.r]ÇCM[vb.r,vb.r]ÇCM[vb.r,da.w]ÇCM[vb.r,db.r]ÇCM[vb.r,vb.w]ÇCM[vb.r,va.w]

ÇCM[va.r,va.r]ÇCM[va.r,vb.r]ÇCM[va.r,da.w]ÇCM[va.r,db.r]ÇCM[va.r,vb.w]ÇCM[va.r,va.w]
ÇCM[db.w,va.r]ÇCM[db.w,vb.r]ÇCM[db.w,da.w]ÇCM[db.w,db.r]ÇCM[db.w,vb.w]ÇCM[db.w,va.w]
ÇCM[vb.w,va.r]ÇCM[vb.w,vb.r]ÇCM[vb.w,da.w]ÇCM[vb.w,db.r]ÇCM[vb.w,vb.w]ÇCM[vb.w,va.w]
ÇCM[da.w,va.r]ÇCM[da.w,vb.r]ÇCM[da.w,da.w]ÇCM[da.w,db.r]ÇCM[da.w,vb.w]ÇCM[da.w,va.w]
ÇCM[va.w,va.r]ÇCM[va.w,vb.r]ÇCM[va.w,da.w]ÇCM[va.w,db.r]ÇCM[va.w,vb.w]ÇCM[va.w,va.w]

= CF Ç {<} Ç CF Ç {<} Ç {>} Ç {>} Ç C Ç C Ç {>} Ç C
= C

September 23, 2019 http://csg.csail.mit.edu/6.375 L08-13

method Action enq(t x) if (!vb);
if (va) begin db <= x; vb <= True; end

else begin da <= x; va <= True; end
endmethod
method Action deq if (va);
if (vb) begin da <= db; vb <= False; end

else begin va <= False; end
endmethod

Two-Element FIFO
More accurate analysis

db da

vb va

method Action enq(t x) if (!vb);
begin db <= x; vb <= True; end

endmethod
method Action deq if (va);

begin va <= False; end
endmethod

§ For more accurate analysis we should consider the
conditions under which both rules will be ready, i.e.,
va =True and vb = False

Thus, enq and deq do
not conflict but the
BSV complier is unable
to deduce this

September 23, 2019 http://csg.csail.mit.edu/6.375 L08-14

Using the CM to Enforce
Serializability
§ Suppose we are given a “rule ordering”, that is, our

preference about the behavior we would like to see
given a set of rules

§ We can keep scheduling the rules in that order, and
if we find a conflict with an already scheduled rule
we skip that rule and go to the next one

§ Mathematically, given the list {r1, r2, …rn}
will-fire(ri) = can-fire(ri) &&

"k<i {if will-fire(rk) then (CM[rk, ri]Ç{<}) = {<}}
= can-fire(ri) &&

"k<i {!will-fire(rk) || (CM[rk, ri]Ç{<}) = {<}}

September 23, 2019 http://csg.csail.mit.edu/6.375 L08-15

An example schedule
rule ra;

x <= y+1;
endrule
rule rb;

y <= z+2;
endrule
rule rc;

z <= x+3;
endrule

§ CM = {(ra<rb), (rb<rc), (rc<ra)}
§ Scheduling priority = {ra,rb,rc}

will-fire(ri) = can-fire(ri) &&
"k<i {!will-fire(rk) || (CM[rk, ri]Ç{<}) = {<}}

§ can-fire(rk) is true for all the rules
every cycle

September 23, 2019 L08-16

§ will-fire(ra) = can-fire(ra)
§ will-fire(rb) = can-fire(rb) &&

(!can-fire(ra) || ((CM[ra, rb]Ç{<}) = {<})
= can-fire(rb) &&((! can-fire(ra)) || True)
= can-fire(rb)

§ will-fire(rc) = can-fire(rc) &&
{(!(can-fire(ra)) || (CM[ra, rc]Ç{<}) = {<})
&& (!can-fire(rb) || (CM[rb, rc]Ç{<}) = {<}))}

= can-fire(rc) &&
{(!(can-fire(ra))||False)) && (!can-fire(rb)||True)}
= can-fire(rc)&&!can-fire(ra)

Ex 4

Synthesis of the scheduler

rule guards
(aka can_fire signals)

will_fire
signalsScheduler

r1.rdy

rn.rdy

r1.en

rn.en

11-17

§ will-fire(ra) = can-fire(ra)
§ will-fire(rb) = can-fire(rb)
§ will-fire(rc) = can-fire(rc)&&!can-fire(ra)

ra.canFire

rc.canFire

ra.willFire

rc.willFire
rb.canFire rb.willFire

§ CM = {(ra<rb), (rb<rc), (rc<ra)}
§ Scheduling priority = {ra,rb,rc}

Since in Ex 4, all canFire signals are true, the scheduler
gets simplified to (True,True,False)

Slightly modified example
rule ra if (y==1);

x <= y+1;
endrule
rule r;

y <= z+2;
endrule
rule rc;

z <= x+3;
endrule

§ CM = {(ra<rb), (rb<rc), (rc<ra)}
§ Scheduling priority = {ra,rb,rc}

will-fire(ri) = can-fire(ri) &&
"k<i {!will-fire(rk) || (CM[rk, ri]Ç{<}) = {<}}

§ can-fire(rk) is true for all the rules
every cycle

September 23, 2019 L08-18

§ will-fire(ra) = can-fire(ra)
§ will-fire(rb) = can-fire(rb)
§ will-fire(rc) = can-fire(rc)&&!can-fire(ra)

Ex 5

Simplification for Ex 5 will lead to
§ will-fire(ra) = (y==1)
§ will-fire(rb) = True
§ will-fire(rc) = !(y==1)

Preserving atomicity while
preventing a rule from firing

§ ra and rb conflict because of
a double write in x

§ Suppose we want to prevent
rb from firing

rule ra;
x <= e1; y <= e2;

endmethod
rule rb;

x <= e3; z <= e4;
endmethod

z

y

x

ra
y

x

rdy

rb

x

z

rdy

What is wrong with this
circuit?

The atomicity of rule rb is
violated: y may be updated
without x being updated!

fix?

September 23, 2019 http://csg.csail.mit.edu/6.375 L08-19

Preserving atomicity while
preventing a rule from firing

§ ra and rb conflict because of
a double write in x

§ Suppose we want to prevent
rb from firing

rule ra;
x <= e1; y <= e2;

endmethod
rule rb;

x <= e3; z <= e4;
endmethod

z

y

x

ra
y

x

rdy

rb

x

z

rdy

What is wrong with this
circuit?

The atomicity of rule rb is
violated: y may be updated
without x being updated!

fix?

When we do not want a
rule to fire all its state
updates must be stopped

September 23, 2019 http://csg.csail.mit.edu/6.375 L08-20

A general method for
inhibiting rule execution

body
rule1

guard rdy

body
rule2

guard rdy

m1
.f

1
m2

.f
2
...

m1
.f

1
m2

.f
2

...

September 23, 2019 http://csg.csail.mit.edu/6.375 L08-21

A general method for
inhibiting rule execution

body
rule1

guard rdy

body
rule2

guard rdy

m1
.f

1
m2

.f
2
...

m1
.f

1
m2

.f
2

...

September 23, 2019 http://csg.csail.mit.edu/6.375 L08-22

A general method for
inhibiting rule execution

body
rule1

guard rdy

body
rule2

guard rdy

m1
.f

1
m2

.f
2
...

m1
.f

1
m2

.f
2

...

§ We introduce a scheduler to control which rules
among the ready rules should execute
§ We feed it the rdy signals of all the rules

Scheduler“Can
fire”

September 23, 2019 http://csg.csail.mit.edu/6.375 L08-23

A general method for
inhibiting rule execution

§ We introduce a scheduler to control which rules
among the ready rules should execute
§ We feed it the rdy signals of all the rules

§ The scheduler lets only non-conflicting rules proceed
§ It turns off some of the “can fire” signals

body
rule1

guard rdy

body
rule2

guard rdy

m1
.f

1
m2

.f
2
...

m1
.f

1
m2

.f
2

...

Scheduler“Can
fire”

“Will
fire”

September 23, 2019 http://csg.csail.mit.edu/6.375 L08-24

A general method for
inhibiting rule execution

§ We introduce a scheduler to control which rules
among the ready rules should execute
§ We feed it the rdy signals of all the rules

§ The scheduler lets only non-conflicting rules proceed
§ It turns off some of the “can fire” signals

body
rule1

guard rdy

body
rule2

guard rdy

m1
.f

1
m2

.f
2
...

m1
.f

1
m2

.f
2

...

Scheduler“Can
fire”

“Will
fire”

Scheduler is a
pure
combinational
circuit with a
small number of
gates

September 23, 2019 http://csg.csail.mit.edu/6.375 L08-25

What is inside the scheduler

ra.canFire

rb.canFire

ra.willFire

rb.willFire

§ Suppose rules ra and rb can be executed
concurrently – no double write

§ Scheduler

September 23, 2019 http://csg.csail.mit.edu/6.375 L08-26

What is inside the scheduler

ra.canFire

rb.canFire

ra.willFire

rb.willFire

The choice is specified by scheduling annotations in the BSV
program

§ Suppose rules ra and rb should not be executed
concurrently

§ Schedule 1: rule ra has priority, i.e.,
if ra can fire rb will not fire

§ Schedule 2: rule rb has priority, i.e.,
if rb can fire ra will not fire

ra.canFire

rb.canFire

ra.willFire

rb.willFire

September 23, 2019 http://csg.csail.mit.edu/6.375 L08-27

Combinational cycles
§ Rules containing following types of actions will

be rejected by the BSV compiler because they
are meaningless and will generate
combinational cycles
§ x[0] <= x[1]
§ x[0] <= y[1]; y[0] <= x[1]
§ if (x[1]) x[0] <= e;

X
x[0]

x[1]

0

1

EHR

September 23, 2019 http://csg.csail.mit.edu/6.375 L08-28

Takeaway

§ One-rule-at-a-time semantics are important to
understand the legal behaviors of a system

§ Efficient hardware for multi-rule system requires
that many rules execute in parallel without
violating the one-rule-at-time semantics

§ BSV compiler builds a scheduler circuit to
execute as many rules as possible concurrently
§ It takes user advice in scheduling conflicting rules

§ For high-performance designs we have to worry
about the CM characteristics of our modules

September 23, 2019 http://csg.csail.mit.edu/6.375 L08-29

